Source code for skcuda.linalg

#!/usr/bin/env python

"""
PyCUDA-based linear algebra functions.
"""

from __future__ import absolute_import, division

from pprint import pprint
from string import Template
from pycuda.tools import context_dependent_memoize
from pycuda.compiler import SourceModule
from pycuda.reduction import ReductionKernel

from pycuda import cumath

import pycuda.gpuarray as gpuarray
import pycuda.driver as drv
import pycuda.elementwise as el
import pycuda.tools as tools
import numpy as np

from . import cublas
from . import cudart
from . import misc
from . import cusolver

import sys
if sys.version_info < (3,):
    range = xrange

class LinAlgError(Exception):
    """Linear Algebra Error."""
    pass

try:
    from . import cula
    _has_cula = True
except (ImportError, OSError):
    _has_cula = False

try:
    from . import cusolver
    _has_cusolver = True
except (ImportError, OSError):
    _has_cusolver = False

from .misc import init, shutdown, add_matvec, div_matvec, mult_matvec

# Get installation location of C headers:
from . import install_headers

[docs]class PCA(object): """ Principal Component Analysis with similar API to sklearn.decomposition.PCA The algorithm implemented here was first implemented with cuda in [Andrecut, 2008]. It performs nonlinear dimensionality reduction for a data matrix, mapping the data to a lower dimensional space of K. See references for more information. Parameters ---------- n_components: int, default=None The number of principal component column vectors to compute in the output matrix. epsilon: float, default=1e-7 The maximum error tolerance for eigen value approximation. max_iter: int, default=10000 The maximum number of iterations in approximating each eigenvalue. Notes ----- If n_components is None, then for a NxP data matrix `K = min(N, P)`. Otherwise, `K = min(n_components, N, P)` References ---------- `[Andrecut, 2008] <https://arxiv.org/pdf/0811.1081.pdf>`_ Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> from skcuda.linalg import PCA as cuPCA >>> pca = cuPCA(n_components=4) # map the data to 4 dimensions >>> X = np.random.rand(1000,100) # 1000 samples of 100-dimensional data vectors >>> X_gpu = gpuarray.GPUArray((1000,100), np.float64, order="F") # note that order="F" or a transpose is necessary. fit_transform requires row-major matrices, and column-major is the default >>> X_gpu.set(X) # copy data to gpu >>> T_gpu = pca.fit_transform(X_gpu) # calculate the principal components >>> linalg.dot(T_gpu[:,0], T_gpu[:,1]) # show that the resulting eigenvectors are orthogonal 0.0 """
[docs] def __init__(self, n_components=None, handle=None, epsilon=1e-7, max_iter=10000): self.n_components = n_components self.epsilon = epsilon self.max_iter = max_iter misc.init() if handle is None: self.h = misc._global_cublas_handle # create a handle to initialize cublas else: self.h = handle
def fit_transform(self, X_gpu): """ Fit the Principal Component Analysis model, and return the dimension-reduced matrix. Compute the first K principal components of R_gpu using the Gram-Schmidt orthogonalization algorithm provided by [Andrecut, 2008]. Parameters ---------- R_gpu: pycuda.gpuarray.GPUArray NxP (N = number of samples, P = number of variables) data matrix that needs to be reduced. R_gpu can be of type numpy.float32 or numpy.float64. Note that if R_gpu is not instantiated with the kwarg 'order="F"', specifying a fortran-contiguous (row-major) array structure, fit_transform will throw an error. Returns ------- T_gpu: pycuda.gpuarray.GPUArray `NxK` matrix of the first K principal components of R_gpu. References ---------- `[Andrecut, 2008] <https://arxiv.org/pdf/0811.1081.pdf>`_ Notes ----- If n_components was not set, then `K = min(N, P)`. Otherwise, `K = min(n_components, N, P)` Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> from skcuda.linalg import PCA as cuPCA >>> pca = cuPCA(n_components=4) # map the data to 4 dimensions >>> X = np.random.rand(1000,100) # 1000 samples of 100-dimensional data vectors >>> X_gpu = gpuarray.GPUArray((1000,100), np.float64, order="F") # note that order="F" or a transpose is necessary. fit_transform requires row-major matrices, and column-major is the default >>> X_gpu.set(X) # copy data to gpu >>> T_gpu = pca.fit_transform(X_gpu) # calculate the principal components >>> linalg.dot(T_gpu[:,0], T_gpu[:,1]) # show that the resulting eigenvectors are orthogonal 0.0 """ if len(X_gpu.shape) != 2: raise ValueError("Array must be 2D for PCA") if X_gpu.flags.c_contiguous: raise ValueError("Array must be fortran-contiguous. Please instantiate with 'order=\"F\"' or use the transpose of a C-ordered array.") R_gpu = X_gpu.copy() # copy X, because it will be altered internally otherwise n = R_gpu.shape[0] # num samples p = R_gpu.shape[1] # num features # choose either single or double precision cublas functions if R_gpu.dtype == 'float32': inpt_dtype = np.float32 cuAxpy = cublas.cublasSaxpy cuCopy = cublas.cublasScopy cuGemv = cublas.cublasSgemv cuNrm2 = cublas.cublasSnrm2 cuScal = cublas.cublasSscal cuGer = cublas.cublasSger elif R_gpu.dtype == 'float64': inpt_dtype = np.float64 cuAxpy = cublas.cublasDaxpy cuCopy = cublas.cublasDcopy cuGemv = cublas.cublasDgemv cuNrm2 = cublas.cublasDnrm2 cuScal = cublas.cublasDscal cuGer = cublas.cublasDger else: raise TypeError("Array must be of type numpy.float32 or numpy.float64, not '" + R_gpu.dtype + "'") n_components = self.n_components if n_components == None or n_components > n or n_components > p: n_components = min(n, p) Lambda = np.zeros((n_components,1), inpt_dtype, order="F") # kx1 P_gpu = gpuarray.zeros((p, n_components), inpt_dtype, order="F") # pxk T_gpu = gpuarray.zeros((n, n_components), inpt_dtype, order="F") # nxk # mean centering data U_gpu = gpuarray.zeros((n,1), np.float32, order="F") U_gpu = misc.sum(R_gpu,axis=1) # nx1 sum the columns of R for i in range(p): cuAxpy(self.h, n, -1.0/p, U_gpu.gpudata, 1, R_gpu[:,i].gpudata, 1) # calculate principal components for k in range(n_components): mu = 0.0 cuCopy(self.h, n, R_gpu[:,k].gpudata, 1, T_gpu[:,k].gpudata, 1) for j in range(self.max_iter): cuGemv(self.h, 't', n, p, 1.0, R_gpu.gpudata, n, T_gpu[:,k].gpudata, 1, 0.0, P_gpu[:,k].gpudata, 1) if k > 0: cuGemv(self.h,'t', p, k, 1.0, P_gpu.gpudata, p, P_gpu[:,k].gpudata, 1, 0.0, U_gpu.gpudata, 1) cuGemv (self.h, 'n', p, k, -1.0, P_gpu.gpudata, p, U_gpu.gpudata, 1, 1.0, P_gpu[:,k].gpudata, 1) l2 = cuNrm2(self.h, p, P_gpu[:,k].gpudata, 1) cuScal(self.h, p, 1.0/l2, P_gpu[:,k].gpudata, 1) cuGemv(self.h, 'n', n, p, 1.0, R_gpu.gpudata, n, P_gpu[:,k].gpudata, 1, 0.0, T_gpu[:,k].gpudata, 1) if k > 0: cuGemv(self.h, 't', n, k, 1.0, T_gpu.gpudata, n, T_gpu[:,k].gpudata, 1, 0.0, U_gpu.gpudata, 1) cuGemv(self.h, 'n', n, k, -1.0, T_gpu.gpudata, n, U_gpu.gpudata, 1, 1.0, T_gpu[:,k].gpudata, 1) Lambda[k] = cuNrm2(self.h, n, T_gpu[:,k].gpudata, 1) cuScal(self.h, n, 1.0/Lambda[k], T_gpu[:,k].gpudata, 1) if abs(Lambda[k] - mu) < self.epsilon*Lambda[k]: break mu = Lambda[k] # end for j cuGer(self.h, n, p, (0.0-Lambda[k]), T_gpu[:,k].gpudata, 1, P_gpu[:,k].gpudata, 1, R_gpu.gpudata, n) # end for k # last step is to multiply each component vector by the corresponding eigenvalue for k in range(n_components): cuScal(self.h, n, Lambda[k], T_gpu[:,k].gpudata, 1) # free gpu memory P_gpu.gpudata.free() U_gpu.gpudata.free() return T_gpu # return the gpu array of principal component scores def set_n_components(self, n_components): """ n_components setter. Parameters ---------- n_components: int The new number of principal components to return in fit_transform. Must be None or greater than 0 """ if n_components > 0 or n_components == None: self.n_components = n_components else: raise ValueError("n_components can only be greater than 0 or None") def get_n_components(self): """ n_components getter. Returns ------- n_components: int The current value of self.n_components """ return self.n_components
[docs]def svd(a_gpu, jobu='A', jobvt='A', lib='cusolver'): """ Singular Value Decomposition. Factors the matrix `a` into two unitary matrices, `u` and `vh`, and a 1-dimensional array of real, non-negative singular values, `s`, such that `a == dot(u.T, dot(diag(s), vh.T))`. Parameters ---------- a : pycuda.gpuarray.GPUArray Input matrix of shape `(m, n)` to decompose. jobu : {'A', 'S', 'O', 'N'} If 'A', return the full `u` matrix with shape `(m, m)`. If 'S', return the `u` matrix with shape `(m, k)`. If 'O', return the `u` matrix with shape `(m, k) without allocating a new matrix. If 'N', don't return `u`. jobvt : {'A', 'S', 'O', 'N'} If 'A', return the full `vh` matrix with shape `(n, n)`. If 'S', return the `vh` matrix with shape `(k, n)`. If 'O', return the `vh` matrix with shape `(k, n) without allocating a new matrix. If 'N', don't return `vh`. lib : str Library to use. May be either 'cula' or 'cusolver'. Returns ------- u : pycuda.gpuarray.GPUArray Unitary matrix of shape `(m, m)` or `(m, k)` depending on value of `jobu`. s : pycuda.gpuarray.GPUArray Array containing the singular values, sorted such that `s[i] >= s[i+1]`. `s` is of length `min(m, n)`. vh : pycuda.gpuarray.GPUArray Unitary matrix of shape `(n, n)` or `(k, n)`, depending on `jobvt`. Notes ----- If using CULA, double precision is only supported if the standard version of the CULA Dense toolkit is installed. This function destroys the contents of the input matrix regardless of the values of `jobu` and `jobvt`. Only one of `jobu` or `jobvt` may be set to `O`, and then only for a square matrix. The CUSOLVER library in CUDA 7.0 only supports `jobu` == `jobvt` == 'A'. Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) >>> a = np.asarray(a, np.complex64) >>> a_gpu = gpuarray.to_gpu(a) >>> u_gpu, s_gpu, vh_gpu = linalg.svd(a_gpu, 'S', 'S') >>> np.allclose(a, np.dot(u_gpu.get(), np.dot(np.diag(s_gpu.get()), vh_gpu.get())), 1e-4) True """ alloc = misc._global_cublas_allocator # The free version of CULA only supports single precision floating # point numbers: data_type = a_gpu.dtype.type real_type = np.float32 if lib == 'cula': if not _has_cula: raise NotImplementedError('CULA not installed') if data_type == np.complex64: func = cula.culaDeviceCgesvd elif data_type == np.float32: func = cula.culaDeviceSgesvd else: if cula._libcula_toolkit == 'standard': if data_type == np.complex128: func = cula.culaDeviceZgesvd elif data_type == np.float64: func = cula.culaDeviceDgesvd else: raise ValueError('unsupported type') real_type = np.float64 else: raise ValueError('double precision not supported') elif lib == 'cusolver': if not _has_cusolver: raise NotImplementedError('CUSOLVER not installed') cusolverHandle = misc._global_cusolver_handle if data_type == np.complex64: func = cusolver.cusolverDnCgesvd bufsize = cusolver.cusolverDnCgesvd_bufferSize elif data_type == np.float32: func = cusolver.cusolverDnSgesvd bufsize = cusolver.cusolverDnSgesvd_bufferSize elif data_type == np.complex128: real_type = np.float64 func = cusolver.cusolverDnZgesvd bufsize = cusolver.cusolverDnZgesvd_bufferSize elif data_type == np.float64: real_type = np.float64 func = cusolver.cusolverDnDgesvd bufsize = cusolver.cusolverDnDgesvd_bufferSize else: raise ValueError('unsupported type') else: raise ValueError('invalid library specified') # Since CUDA assumes that arrays are stored in column-major # format, the input matrix is assumed to be transposed: n, m = a_gpu.shape square = (n == m) # CUSOLVER's gesvd routines only support m >= n as of CUDA 7.5: if lib == 'cusolver' and m < n: raise ValueError('CUSOLVER only supports a_gpu.shape[1] >= a_gpu.shape[0]') # Since the input matrix is transposed, jobu and jobvt must also # be switched because the computed matrices will be returned in # reversed order: jobvt, jobu = jobu, jobvt # Set the leading dimension of the input matrix: lda = max(1, m) # Allocate the array of singular values: s_gpu = gpuarray.empty(min(m, n), real_type, allocator=alloc) # CUSOLVER in CUDA 7.0 only supports jobu = jobvt = 'A': jobu = jobu.upper() jobvt = jobvt.upper() if lib == 'cusolver' and (jobu != 'A' or jobvt != 'A') and \ cudart._cudart_version <= 7000: raise ValueError("CUSOLVER 7.0 only supports jobu = jobvt = 'A'") # Set the leading dimension and allocate u: ldu = m if jobu == 'A': u_gpu = gpuarray.empty((ldu, m), data_type, allocator=alloc) elif jobu == 'S': u_gpu = gpuarray.empty((min(m, n), ldu), data_type, allocator=alloc) elif jobu == 'O': if not square: raise ValueError('in-place computation of singular vectors '+ 'of non-square matrix not allowed') ldu = a_gpu.shape[1] u_gpu = a_gpu else: ldu = 1 u_gpu = gpuarray.empty((), data_type, allocator=alloc) # Set the leading dimension and allocate vh: if jobvt == 'A': ldvt = n vh_gpu = gpuarray.empty((n, n), data_type, allocator=alloc) elif jobvt == 'S': ldvt = min(m, n) vh_gpu = gpuarray.empty((n, ldvt), data_type, allocator=alloc) elif jobvt == 'O': if jobu == 'O': raise ValueError('jobu and jobvt cannot both be O') if not square: raise ValueError('in-place computation of singular vectors '+ 'of non-square matrix not allowed') ldvt = a_gpu.shape[1] vh_gpu = a_gpu else: ldvt = 1 vh_gpu = gpuarray.empty((), data_type, allocator=alloc) # Compute SVD and check error status: if lib == 'cula': func(jobu, jobvt, m, n, int(a_gpu.gpudata), lda, int(s_gpu.gpudata), int(u_gpu.gpudata), ldu, int(vh_gpu.gpudata), ldvt) # Free internal CULA memory: cula.culaFreeBuffers() else: # Allocate working space: Lwork = bufsize(misc._global_cusolver_handle, m, n) Work = gpuarray.empty(Lwork, data_type, allocator=alloc) devInfo = gpuarray.empty(1, np.int32, allocator=alloc) # rwork is only needed for complex arrays: if data_type != real_type: rwork = np.empty(Lwork, real_type).ctypes.data else: rwork = 0 func(misc._global_cusolver_handle, jobu, jobvt, m, n, int(a_gpu.gpudata), lda, int(s_gpu.gpudata), int(u_gpu.gpudata), ldu, int(vh_gpu.gpudata), ldvt, int(Work.gpudata), Lwork, rwork, int(devInfo.gpudata)) # Free working space: del rwork, Work, devInfo # Since the input is assumed to be transposed, it is necessary to # return the computed matrices in reverse order: if jobu in ['A', 'S', 'O'] and jobvt in ['A', 'S', 'O']: return vh_gpu, s_gpu, u_gpu elif jobu == 'N' and jobvt != 'N': return vh_gpu, s_gpu elif jobu != 'N' and jobvt == 'N': return s_gpu, u_gpu else: return s_gpu
[docs]def cho_factor(a_gpu, uplo='L', lib='cusolver'): """ Cholesky factorization. Performs an in-place Cholesky factorization on the matrix `a` such that `a = x*x.T` or `x.T*x`, if the lower='L' or upper='U' triangle of `a` is used, respectively. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Input matrix of shape `(m, m)` to decompose. uplo : {'U', 'L'} Use upper or lower (default) triangle of 'a_gpu' lib : str Library to use. May be either 'cula' or 'cusolver'. Notes ----- If using CULA, double precision is only supported if the standard version of the CULA Dense toolkit is installed. Examples -------- >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> import numpy as np >>> import scipy.linalg >>> import skcuda.linalg as linalg >>> linalg.init() >>> a = np.array([[3.0,0.0],[0.0,7.0]]) >>> a = np.asarray(a, np.float64) >>> a_gpu = gpuarray.to_gpu(a) >>> cho_factor(a_gpu) >>> np.allclose(a_gpu.get(), scipy.linalg.cho_factor(a)[0]) True """ alloc = misc._global_cublas_allocator data_type = a_gpu.dtype.type if lib == 'cula': if not _has_cula: raise NotImplementedError('CULA not installed') real_type = np.float32 if cula._libcula_toolkit == 'standard': if data_type == np.complex64: func = cula.culaDeviceCpotrf elif data_type == np.float32: func = cula.culaDeviceSpotrf elif data_type == np.complex128: func = cula.culaDeviceZpotrf elif data_type == np.float64: func = cula.culaDeviceDpotrf else: raise ValueError('unsupported type') real_type = np.float64 else: raise ValueError('Cholesky factorization not included in CULA Dense Free version') elif lib == 'cusolver': if not _has_cusolver: raise NotImplementedError('CUSOLVER not installed') cusolverHandle = misc._global_cusolver_handle if data_type == np.complex64: func = cusolver.cusolverDnCpotrf bufsize = cusolver.cusolverDnCpotrf_bufferSize elif data_type == np.float32: func = cusolver.cusolverDnSpotrf bufsize = cusolver.cusolverDnSpotrf_bufferSize elif data_type == np.complex128: real_type = np.float64 func = cusolver.cusolverDnZpotrf bufsize = cusolver.cusolverDnZpotrf_bufferSize elif data_type == np.float64: real_type = np.float64 func = cusolver.cusolverDnDpotrf bufsize = cusolver.cusolverDnDpotrf_bufferSize else: raise ValueError('unsupported type') else: raise ValueError('invalid library specified') # Since CUDA assumes that arrays are stored in column-major # format, the input matrix is assumed to be transposed: n, m = a_gpu.shape if (n!=m): raise ValueError('Matrix must be symmetric positive-definite') # Set the leading dimension of the input matrix: lda = max(1, m) # Factorize and check error status: if lib == 'cula': func(uplo, n, int(a_gpu.gpudata), lda) # Free internal CULA memory: cula.culaFreeBuffers() else: # CUSOLVER expects uplo to be an int rather than a char: uplo = cublas._CUBLAS_FILL_MODE[uplo] # Allocate working space: Lwork = bufsize(misc._global_cusolver_handle, uplo, n, int(a_gpu.gpudata), lda) Work = gpuarray.empty(Lwork, data_type, allocator=alloc) devInfo = gpuarray.empty(1, np.int32, allocator=alloc) func(misc._global_cusolver_handle, uplo, n, int(a_gpu.gpudata), lda, int(Work.gpudata), Lwork, int(devInfo.gpudata)) # Free working space: del Work, devInfo
# In-place operation. No return matrix. Result is stored in the input matrix.
[docs]def cholesky(a_gpu, uplo='L', lib='cusolver'): """ Cholesky factorization. Performs an in-place Cholesky factorization on the matrix `a` such that `a = x*x.T` or `x.T*x`, if the lower='L' or upper='U' triangle of `a` is used, respectively. All other entries in `a` are set to 0. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Input matrix of shape `(m, m)` to decompose. uplo : {'U', 'L'} Use upper or lower (default) triangle of 'a_gpu' lib : str Library to use. May be either 'cula' or 'cusolver'. Notes ----- If using CULA, double precision is only supported if the standard version of the CULA Dense toolkit is installed. Examples -------- >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> import numpy as np >>> import scipy.linalg >>> import skcuda.linalg as linalg >>> linalg.init() >>> a = np.array([[3.0,0.0],[0.0,7.0]]) >>> a = np.asarray(a, np.float64) >>> a_gpu = gpuarray.to_gpu(a) >>> cholesky(a_gpu) >>> np.allclose(a_gpu.get(), scipy.linalg.cholesky(a)[0]) True """ if a_gpu.dtype == np.float32: use_double = 0 use_complex = 0 elif a_gpu.dtype == np.float64: use_double = 1 use_complex = 0 elif a_gpu.dtype == np.complex64: use_double = 0 use_complex = 1 elif a_gpu.dtype == np.complex128: use_double = 1 use_complex = 1 else: raise ValueError('unrecognized type') cho_factor(a_gpu, uplo, lib) N = a_gpu.shape[0] dev = misc.get_current_device() block_dim, grid_dim = misc.select_block_grid_sizes(dev, a_gpu.shape) # Zero out the opposite triangle of the matrix if cublas._CUBLAS_FILL_MODE[uplo] == 0: # 0 == L func = _get_triu_kernel(use_double, use_complex, cols=N) else: func = _get_tril_kernel(use_double, use_complex, cols=N) func(a_gpu, np.uint32(a_gpu.size), block=block_dim, grid=grid_dim)
[docs]def cho_solve(a_gpu, b_gpu, uplo='L', lib='cusolver'): """ Cholesky solver. Solve a system of equations via Cholesky factorization, i.e. `a*x = b`. Overwrites `b` to give `inv(a)*b`, and overwrites the chosen triangle of `a` with factorized triangle. Parameters ---------- a : pycuda.gpuarray.GPUArray Input matrix of shape `(m, m)` to decompose. b : pycuda.gpuarray.GPUArray Input matrix of shape `(m, 1)` to decompose. uplo: chr Use the upper='U' or lower='L' (default) triangle of `a`. lib : str Library to use. May be either 'cula' or 'cusolver'. Notes ----- If using CULA, double precision is only supported if the standard version of the CULA Dense toolkit is installed. Examples -------- >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> import numpy as np >>> import scipy.linalg >>> import skcuda.linalg as linalg >>> linalg.init() >>> a = np.array([[3, 0], [0, 7]]).asarray(np.float64) >>> a_gpu = gpuarray.to_gpu(a) >>> b = np.array([11, 19]).astype(np.float64) >>> b_gpu = gpuarray.to_gpu(b) >>> cho_solve(a_gpu, b_gpu) >>> np.allclose(b_gpu.get(), scipy.linalg.cho_solve(scipy.linalg.cho_factor(a), b)) True """ alloc = misc._global_cublas_allocator data_type = a_gpu.dtype.type if lib == 'cula': if not _has_cula: raise NotImplementedError('CULA not installed') if cula._libcula_toolkit == 'standard': if data_type == np.complex64: func = cula.culaDeviceCposv elif data_type == np.float32: func = cula.culaDeviceSposv elif data_type == np.complex128: func = cula.culaDeviceZposv elif data_type == np.float64: func = cula.culaDeviceDposv else: raise ValueError('unsupported type') else: raise ValueError('Cholesky factorization not included in CULA Dense Free version') elif lib == 'cusolver': if not _has_cusolver: raise NotImplementedError('CUSOLVER not installed') cusolverHandle = misc._global_cusolver_handle if data_type == np.complex64: func = cusolver.cusolverDnCpotrs elif data_type == np.float32: func = cusolver.cusolverDnSpotrs elif data_type == np.complex128: func = cusolver.cusolverDnZpotrs elif data_type == np.float64: func = cusolver.cusolverDnDpotrs else: raise ValueError('unsupported type') else: raise ValueError('invalid library specified') # Since CUDA assumes that arrays are stored in column-major # format, the input matrix is assumed to be transposed: na, ma = a_gpu.shape if (na!=ma): raise ValueError('Matrix must be symmetric positive-definite') if a_gpu.flags.c_contiguous != b_gpu.flags.c_contiguous: raise ValueError('unsupported combination of input order') b_shape = b_gpu.shape if len(b_shape) == 1: b_shape = (b_shape[0], 1) if a_gpu.flags.f_contiguous: lda = max(1, na) ldb = max(1, b_shape[0]) else: lda = max(1, ma) ldb = lda if b_shape[1] > 1: raise ValueError('only vectors allowed in c-order RHS') if lib == 'cula': # Assuming we are only solving for a vector. Hence, nrhs = 1 func(uplo, na, b_shape[1], int(a_gpu.gpudata), lda, int(b_gpu.gpudata), ldb) # Free internal CULA memory: cula.culaFreeBuffers() else: # CUSOLVER expects uplo to be an int rather than a char: uplo = cublas._CUBLAS_FILL_MODE[uplo] # Since CUSOLVER doesn't implement POSV as of 8.0, we need to factor the # given matrix before calling POTRS: cho_factor(a_gpu, uplo, lib) # Assuming we are only solving for a vector. Hence, nrhs = 1 devInfo = gpuarray.empty(1, np.int32, allocator=alloc) func(cusolverHandle, uplo, na, b_shape[1], int(a_gpu.gpudata), lda, int(b_gpu.gpudata), ldb, int(devInfo.gpudata))
# In-place operation. No return matrix. Result is stored in the input matrix # and in the input vector.
[docs]def add_dot(a_gpu, b_gpu, c_gpu, transa='N', transb='N', alpha=1.0, beta=1.0, handle=None): """ Calculates the dot product of two arrays and adds it to a third matrix. In essence, this computes C = alpha * (A B) + beta * C For 2D arrays of shapes `(m, k)` and `(k, n)`, it computes the matrix product; the result has shape `(m, n)`. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Input array. b_gpu : pycuda.gpuarray.GPUArray Input array. c_gpu : pycuda.gpuarray.GPUArray Cumulative array. transa : char If 'T', compute the product of the transpose of `a_gpu`. If 'C', compute the product of the Hermitian of `a_gpu`. transb : char If 'T', compute the product of the transpose of `b_gpu`. If 'C', compute the product of the Hermitian of `b_gpu`. handle : int (optional) CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Returns ------- c_gpu : pycuda.gpuarray.GPUArray Notes ----- The matrices must all contain elements of the same data type. """ if handle is None: handle = misc._global_cublas_handle # Get the shapes of the arguments (accounting for the # possibility that one of them may only have one dimension): a_shape = a_gpu.shape b_shape = b_gpu.shape if len(a_shape) == 1: a_shape = (1, a_shape[0]) if len(b_shape) == 1: b_shape = (1, b_shape[0]) # Perform matrix multiplication for 2D arrays: if (a_gpu.dtype == np.complex64 and b_gpu.dtype == np.complex64): cublas_func = cublas.cublasCgemm alpha = np.complex64(alpha) beta = np.complex64(beta) elif (a_gpu.dtype == np.float32 and b_gpu.dtype == np.float32): cublas_func = cublas.cublasSgemm alpha = np.float32(alpha) beta = np.float32(beta) elif (a_gpu.dtype == np.complex128 and b_gpu.dtype == np.complex128): cublas_func = cublas.cublasZgemm alpha = np.complex128(alpha) beta = np.complex128(beta) elif (a_gpu.dtype == np.float64 and b_gpu.dtype == np.float64): cublas_func = cublas.cublasDgemm alpha = np.float64(alpha) beta = np.float64(beta) else: raise ValueError('unsupported combination of input types') transa = transa.lower() transb = transb.lower() a_f_order = a_gpu.strides[1] > a_gpu.strides[0] b_f_order = b_gpu.strides[1] > b_gpu.strides[0] c_f_order = c_gpu.strides[1] > c_gpu.strides[0] if a_f_order != b_f_order: raise ValueError('unsupported combination of input order') if a_f_order != c_f_order: raise ValueError('invalid order for c_gpu') if a_f_order: # F order array if transa in ['t', 'c']: k, m = a_shape elif transa in ['n']: m, k = a_shape else: raise ValueError('invalid value for transa') if transb in ['t', 'c']: n, l = b_shape elif transb in ['n']: l, n = b_shape else: raise ValueError('invalid value for transb') if l != k: raise ValueError('objects are not aligned') lda = max(1, a_gpu.strides[1] // a_gpu.dtype.itemsize) ldb = max(1, b_gpu.strides[1] // b_gpu.dtype.itemsize) ldc = max(1, c_gpu.strides[1] // c_gpu.dtype.itemsize) if c_gpu.shape != (m, n) or c_gpu.dtype != a_gpu.dtype: raise ValueError('invalid value for c_gpu') cublas_func(handle, transa, transb, m, n, k, alpha, a_gpu.gpudata, lda, b_gpu.gpudata, ldb, beta, c_gpu.gpudata, ldc) else: if transb in ['t', 'c']: m, k = b_shape elif transb in ['n']: k, m = b_shape else: raise ValueError('invalid value for transb') if transa in ['t', 'c']: l, n = a_shape elif transa in ['n']: n, l = a_shape else: raise ValueError('invalid value for transa') if l != k: raise ValueError('objects are not aligned') lda = max(1, a_gpu.strides[0] // a_gpu.dtype.itemsize) ldb = max(1, b_gpu.strides[0] // b_gpu.dtype.itemsize) ldc = max(1, c_gpu.strides[0] // c_gpu.dtype.itemsize) # Note that the desired shape of the output matrix is the transpose # of what CUBLAS assumes: if c_gpu.shape != (n, m) or c_gpu.dtype != a_gpu.dtype: raise ValueError('invalid value for c_gpu') cublas_func(handle, transb, transa, m, n, k, alpha, b_gpu.gpudata, ldb, a_gpu.gpudata, lda, beta, c_gpu.gpudata, ldc) return c_gpu
[docs]def dot(x_gpu, y_gpu, transa='N', transb='N', handle=None, out=None): """ Dot product of two arrays. For 1D arrays, this function computes the inner product. For 2D arrays of shapes `(m, k)` and `(k, n)`, it computes the matrix product; the result has shape `(m, n)`. Parameters ---------- x_gpu : pycuda.gpuarray.GPUArray Input array. y_gpu : pycuda.gpuarray.GPUArray Input array. transa : char If 'T', compute the product of the transpose of `x_gpu`. If 'C', compute the product of the Hermitian of `x_gpu`. transb : char If 'T', compute the product of the transpose of `y_gpu`. If 'C', compute the product of the Hermitian of `y_gpu`. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. out : pycuda.gpuarray.GPUArray, optional Output argument. Will be used to store the result. Returns ------- c_gpu : pycuda.gpuarray.GPUArray, float{32,64}, or complex{64,128} Inner product of `x_gpu` and `y_gpu`. When the inputs are 1D arrays, the result will be returned as a scalar. Notes ----- The input matrices must all contain elements of the same data type. Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> import skcuda.misc as misc >>> linalg.init() >>> a = np.asarray(np.random.rand(4, 2), np.float32) >>> b = np.asarray(np.random.rand(2, 2), np.float32) >>> a_gpu = gpuarray.to_gpu(a) >>> b_gpu = gpuarray.to_gpu(b) >>> c_gpu = linalg.dot(a_gpu, b_gpu) >>> np.allclose(np.dot(a, b), c_gpu.get()) True >>> d = np.asarray(np.random.rand(5), np.float32) >>> e = np.asarray(np.random.rand(5), np.float32) >>> d_gpu = gpuarray.to_gpu(d) >>> e_gpu = gpuarray.to_gpu(e) >>> f = linalg.dot(d_gpu, e_gpu) >>> np.allclose(np.dot(d, e), f) True """ if handle is None: handle = misc._global_cublas_handle x_shape = x_gpu.shape y_shape = y_gpu.shape # When one argument is a vector and the other a matrix, increase the number # of dimensions of the vector to 2 so that they can be multiplied using # GEMM, but also set the shape of the output to 1 dimension to conform with # the behavior of numpy.dot: if len(x_shape) == 1 and len(y_shape) > 1: out_shape = (y_shape[1],) x_shape = (1, x_shape[0]) x_gpu = x_gpu.reshape(x_shape) elif len(x_shape) > 1 and len(y_shape) == 1: out_shape = (x_shape[0],) y_shape = (y_shape[0], 1) y_gpu = y_gpu.reshape(y_shape) if len(x_gpu.shape) == 1 and len(y_gpu.shape) == 1: if x_gpu.size != y_gpu.size: raise ValueError('arrays must be of same length') # Compute inner product for 1D arrays: if (x_gpu.dtype == np.complex64 and y_gpu.dtype == np.complex64): cublas_func = cublas.cublasCdotu elif (x_gpu.dtype == np.float32 and y_gpu.dtype == np.float32): cublas_func = cublas.cublasSdot elif (x_gpu.dtype == np.complex128 and y_gpu.dtype == np.complex128): cublas_func = cublas.cublasZdotu elif (x_gpu.dtype == np.float64 and y_gpu.dtype == np.float64): cublas_func = cublas.cublasDdot else: raise ValueError('unsupported combination of input types') return cublas_func(handle, x_gpu.size, x_gpu.gpudata, 1, y_gpu.gpudata, 1) else: transa = transa.lower() transb = transb.lower() if out is None: if transa in ['t', 'c']: k, m = x_shape else: m, k = x_shape if transb in ['t', 'c']: n, l = y_shape else: l, n = y_shape alloc = misc._global_cublas_allocator if x_gpu.strides[1] > x_gpu.strides[0]: # F order out = gpuarray.empty((m, n), x_gpu.dtype, order="F", allocator=alloc) else: out = gpuarray.empty((m, n), x_gpu.dtype, order="C", allocator=alloc) add_dot(x_gpu, y_gpu, out, transa, transb, 1.0, 0.0, handle) if 'out_shape' in locals(): return out.reshape(out_shape) else: return out
[docs]def mdot(*args, **kwargs): """ Product of several matrices. Computes the matrix product of several arrays of shapes. Parameters ---------- a_gpu, b_gpu, ... : pycuda.gpuarray.GPUArray Arrays to multiply. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Returns ------- c_gpu : pycuda.gpuarray.GPUArray Matrix product of `a_gpu`, `b_gpu`, etc. Notes ----- The input matrices must all contain elements of the same data type. Examples -------- >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> a = np.asarray(np.random.rand(4, 2), np.float32) >>> b = np.asarray(np.random.rand(2, 2), np.float32) >>> c = np.asarray(np.random.rand(2, 2), np.float32) >>> a_gpu = gpuarray.to_gpu(a) >>> b_gpu = gpuarray.to_gpu(b) >>> c_gpu = gpuarray.to_gpu(c) >>> d_gpu = linalg.mdot(a_gpu, b_gpu, c_gpu) >>> np.allclose(np.dot(a, np.dot(b, c)), d_gpu.get()) True """ if ' handle' in kwargs and kwargs['handle'] is not None: handle = kwargs['handle'] else: handle = misc._global_cublas_handle # Free the temporary matrix allocated when computing the dot # product: out_gpu = args[0] for next_gpu in args[1:]: temp_gpu = dot(out_gpu, next_gpu, handle=handle) out_gpu.gpudata.free() del(out_gpu) out_gpu = temp_gpu del(temp_gpu) return out_gpu
[docs]def dot_diag(d_gpu, a_gpu, trans='N', overwrite=False, handle=None): """ Dot product of diagonal and non-diagonal arrays. Computes the matrix product of a diagonal array represented as a vector and a non-diagonal array. Parameters ---------- d_gpu : pycuda.gpuarray.GPUArray Array of length `N` corresponding to the diagonal of the multiplier. a_gpu : pycuda.gpuarray.GPUArray Multiplicand array with shape `(N, M)`. Must have same data type as `d_gpu`. trans : char If 'T', compute the product of the transpose of `a_gpu`. overwrite : bool (default: False) If true, save the result in `a_gpu`. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Returns ------- r_gpu : pycuda.gpuarray.GPUArray The computed matrix product. Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> d = np.random.rand(4) >>> a = np.random.rand(4, 4) >>> d_gpu = gpuarray.to_gpu(d) >>> a_gpu = gpuarray.to_gpu(a) >>> r_gpu = linalg.dot_diag(d_gpu, a_gpu) >>> np.allclose(np.dot(np.diag(d), a), r_gpu.get()) True """ if handle is None: handle = misc._global_cublas_handle if not (len(d_gpu.shape) == 1 or (d_gpu.shape[0] == 1 or d_gpu.shape[1] == 1)): raise ValueError('d_gpu must be a vector') if len(a_gpu.shape) != 2: raise ValueError('a_gpu must be a matrix') trans = trans.lower() if trans == 'n': rows, cols = a_gpu.shape else: cols, rows = a_gpu.shape N = d_gpu.size if N != rows: raise ValueError('incompatible dimensions') if a_gpu.dtype != d_gpu.dtype: raise ValueError('argument types must be the same') if (a_gpu.dtype == np.complex64): cublas_func = cublas.cublasCdgmm elif (a_gpu.dtype == np.float32): cublas_func = cublas.cublasSdgmm elif (a_gpu.dtype == np.complex128): cublas_func = cublas.cublasZdgmm elif (a_gpu.dtype == np.float64): cublas_func = cublas.cublasDdgmm else: raise ValueError('unsupported input type') if overwrite: r_gpu = a_gpu else: r_gpu = a_gpu.copy() if (trans == 'n' and a_gpu.flags.c_contiguous) \ or (trans == 't' and a_gpu.flags.f_contiguous): side = "R" else: side = "L" lda = a_gpu.shape[1] if a_gpu.flags.c_contiguous else a_gpu.shape[0] ldr = lda n, m = a_gpu.shape if a_gpu.flags.f_contiguous else (a_gpu.shape[1], a_gpu.shape[0]) cublas_func(handle, side, n, m, a_gpu.gpudata, lda, d_gpu.gpudata, 1, r_gpu.gpudata, ldr) return r_gpu
[docs]def add_diag(d_gpu, a_gpu, overwrite=False, handle=None): """ Adds a vector to the diagonal of an array. This is the same as A + diag(D), but faster. Parameters ---------- d_gpu : pycuda.gpuarray.GPUArray Array of length `N` corresponding to the vector to be added to the diagonal. a_gpu : pycuda.gpuarray.GPUArray Summand array with shape `(N, N)`. overwrite : bool (default: False) If true, save the result in `a_gpu`. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Returns ------- r_gpu : pycuda.gpuarray.GPUArray The computed sum product. Notes ----- `d_gpu` and `a_gpu` must have the same precision data type. """ if handle is None: handle = misc._global_cublas_handle if not (len(d_gpu.shape) == 1 or (d_gpu.shape[0] == 1 or d_gpu.shape[1] == 1)): raise ValueError('d_gpu must be a vector') if len(a_gpu.shape) != 2: raise ValueError('a_gpu must be a matrix') if a_gpu.shape[0] != a_gpu.shape[1]: raise ValueError('a_gpu must be square') if d_gpu.size != a_gpu.shape[0]: raise ValueError('incompatible dimensions') if a_gpu.dtype != d_gpu.dtype: raise ValueError('precision of argument types must be the same') if (a_gpu.dtype == np.complex64): axpy = cublas.cublasCaxpy elif (a_gpu.dtype == np.float32): axpy = cublas.cublasSaxpy elif (a_gpu.dtype == np.complex128): axpy = cublas.cublasZaxpy elif (a_gpu.dtype == np.float64): axpy = cublas.cublasDaxpy else: raise ValueError('unsupported input type') if overwrite: r_gpu = a_gpu else: r_gpu = a_gpu.copy() n = a_gpu.shape[0] axpy(handle, n, 1.0, d_gpu.gpudata, int(1), r_gpu.gpudata, int(n+1)) return r_gpu
def _transpose(a_gpu, conj=False, handle=None): if handle is None: handle = misc._global_cublas_handle if len(a_gpu.shape) != 2: raise ValueError('a_gpu must be a matrix') if (a_gpu.dtype == np.complex64): func = cublas.cublasCgeam elif (a_gpu.dtype == np.float32): func = cublas.cublasSgeam elif (a_gpu.dtype == np.complex128): func = cublas.cublasZgeam elif (a_gpu.dtype == np.float64): func = cublas.cublasDgeam else: raise ValueError('unsupported input type') if conj: transa = 'c' else: transa = 't' M, N = a_gpu.shape at_gpu = gpuarray.empty((N, M), a_gpu.dtype) func(handle, transa, 't', M, N, 1.0, a_gpu.gpudata, N, 0.0, a_gpu.gpudata, N, at_gpu.gpudata, M) return at_gpu
[docs]def transpose(a_gpu, handle=None): """ Matrix transpose. Transpose a matrix in device memory and return an object representing the transposed matrix. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Input matrix of shape `(m, n)`. Returns ------- at_gpu : pycuda.gpuarray.GPUArray Transposed matrix of shape `(n, m)`. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Examples -------- >>> import pycuda.autoinit >>> import pycuda.driver as drv >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> a = np.array([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], np.float32) >>> a_gpu = gpuarray.to_gpu(a) >>> at_gpu = linalg.transpose(a_gpu) >>> np.all(a.T == at_gpu.get()) True >>> b = np.array([[1j, 2j, 3j, 4j, 5j, 6j], [7j, 8j, 9j, 10j, 11j, 12j]], np.complex64) >>> b_gpu = gpuarray.to_gpu(b) >>> bt_gpu = linalg.transpose(b_gpu) >>> np.all(b.T == bt_gpu.get()) True """ return _transpose(a_gpu, False, handle)
[docs]def hermitian(a_gpu, handle=None): """ Hermitian (conjugate) matrix transpose. Conjugate transpose a matrix in device memory and return an object representing the transposed matrix. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Input matrix of shape `(m, n)`. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Returns ------- at_gpu : pycuda.gpuarray.GPUArray Transposed matrix of shape `(n, m)`. Examples -------- >>> import pycuda.autoinit >>> import pycuda.driver as drv >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> a = np.array([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], np.float32) >>> a_gpu = gpuarray.to_gpu(a) >>> at_gpu = linalg.hermitian(a_gpu) >>> np.all(a.T == at_gpu.get()) True >>> b = np.array([[1j, 2j, 3j, 4j, 5j, 6j], [7j, 8j, 9j, 10j, 11j, 12j]], np.complex64) >>> b_gpu = gpuarray.to_gpu(b) >>> bt_gpu = linalg.hermitian(b_gpu) >>> np.all(np.conj(b.T) == bt_gpu.get()) True """ return _transpose(a_gpu, True, handle)
[docs]def conj(x_gpu, overwrite=False): """ Complex conjugate. Compute the complex conjugate of the array in device memory. Parameters ---------- x_gpu : pycuda.gpuarray.GPUArray Input array of shape `(m, n)`. overwrite : bool (default: False) If true, save the result in the specified array. If false, return the result in a newly allocated array. Returns ------- xc_gpu : pycuda.gpuarray.GPUArray Conjugate of the input array. If `overwrite` is true, the returned matrix is the same as the input array. Examples -------- >>> import pycuda.driver as drv >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> x = np.array([[1+1j, 2-2j, 3+3j, 4-4j], [5+5j, 6-6j, 7+7j, 8-8j]], np.complex64) >>> x_gpu = gpuarray.to_gpu(x) >>> y_gpu = linalg.conj(x_gpu) >>> np.all(x == np.conj(y_gpu.get())) True """ # Don't attempt to process non-complex matrix types: if x_gpu.dtype in [np.float32, np.float64]: return x_gpu try: func = conj.cache[x_gpu.dtype] except KeyError: ctype = tools.dtype_to_ctype(x_gpu.dtype) func = el.ElementwiseKernel( "{ctype} *x, {ctype} *y".format(ctype=ctype), "y[i] = conj(x[i])") conj.cache[x_gpu.dtype] = func if overwrite: func(x_gpu, x_gpu) return x_gpu else: y_gpu = gpuarray.empty_like(x_gpu) func(x_gpu, y_gpu) return y_gpu
conj.cache = {} @context_dependent_memoize def _get_diag_kernel(dtype): ctype=tools.dtype_to_ctype(dtype) return el.ElementwiseKernel("{ctype} *d, {ctype} *v, int N".format(ctype=ctype), "d[i*(N+1)] = v[i]")
[docs]def diag(v_gpu): """ Construct a diagonal matrix if input array is one-dimensional, or extracts diagonal entries of a two-dimensional array. If input-array is one-dimensional, constructs a matrix in device memory whose diagonal elements correspond to the elements in the specified array; all non-diagonal elements are set to 0. If input-array is two-dimensional, constructs an array in device memory whose elements correspond to the elements along the main-diagonal of the specified array. Parameters ---------- v_obj : pycuda.gpuarray.GPUArray Input array of shape `(n,m)`. Returns ------- d_gpu : pycuda.gpuarray.GPUArray If v_obj has shape `(n,1)`, output is diagonal matrix of dimensions `[n, n]`. If v_obj has shape `(n,m)`, output is array of length `min(n,m)`. Examples -------- >>> import pycuda.driver as drv >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> v = np.array([1, 2, 3, 4, 5, 6], np.float32) >>> v_gpu = gpuarray.to_gpu(v) >>> d_gpu = linalg.diag(v_gpu) >>> np.all(d_gpu.get() == np.diag(v)) True >>> v = np.array([1j, 2j, 3j, 4j, 5j, 6j], np.complex64) >>> v_gpu = gpuarray.to_gpu(v) >>> d_gpu = linalg.diag(v_gpu) >>> np.all(d_gpu.get() == np.diag(v)) True >>> v = np.array([[1., 2., 3.],[4., 5., 6.]], np.float64) >>> v_gpu = gpuarray.to_gpu(v) >>> d_gpu = linalg.diag(v_gpu) >>> d_gpu array([ 1., 5.]) """ if v_gpu.dtype not in [np.float32, np.float64, np.complex64, np.complex128]: raise ValueError('unrecognized type') alloc = misc._global_cublas_allocator if (len(v_gpu.shape) > 1) and (len(v_gpu.shape) < 3): if (v_gpu.dtype == np.complex64): func = cublas.cublasCcopy elif (v_gpu.dtype == np.float32): func = cublas.cublasScopy elif (v_gpu.dtype == np.complex128): func = cublas.cublasZcopy elif (v_gpu.dtype == np.float64): func = cublas.cublasDcopy else: raise ValueError('unsupported input type') n = min(v_gpu.shape) incx = int(np.sum(v_gpu.strides)/v_gpu.dtype.itemsize) # Allocate the output array d_gpu = gpuarray.empty(n, v_gpu.dtype.type, allocator=alloc) handle = misc._global_cublas_handle func(handle, n, v_gpu.gpudata, incx, d_gpu.gpudata, 1) return d_gpu elif len(v_gpu.shape) >= 3: raise ValueError('input array cannot have greater than 2-dimensions') # Initialize output matrix: N = len(v_gpu) if N <= 0: raise ValueError('N must be greater than 0') d_gpu = misc.zeros((N, N), v_gpu.dtype, allocator=alloc) func = _get_diag_kernel(v_gpu.dtype) func(d_gpu, v_gpu, N, slice=slice(0, N)) return d_gpu
@context_dependent_memoize def _get_eye_kernel(dtype): ctype=tools.dtype_to_ctype(dtype) return el.ElementwiseKernel("{ctype} *e".format(ctype=ctype), "e[i] = 1")
[docs]def eye(N, dtype=np.float32): """ Construct a 2D matrix with ones on the diagonal and zeros elsewhere. Constructs a matrix in device memory whose diagonal elements are set to 1 and non-diagonal elements are set to 0. Parameters ---------- N : int Number of rows or columns in the output matrix. dtype : type Matrix data type. Returns ------- e_gpu : pycuda.gpuarray.GPUArray Diagonal matrix of dimensions `[N, N]` with diagonal values set to 1. Examples -------- >>> import pycuda.driver as drv >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> N = 5 >>> e_gpu = linalg.eye(N) >>> np.all(e_gpu.get() == np.eye(N)) True >>> e_gpu = linalg.eye(N, np.complex64) >>> np.all(e_gpu.get() == np.eye(N, dtype=np.complex64)) True """ if dtype not in [np.float32, np.float64, np.complex64, np.complex128]: raise ValueError('unrecognized type') if N <= 0: raise ValueError('N must be greater than 0') alloc = misc._global_cublas_allocator e_gpu = misc.zeros((N, N), dtype, allocator=alloc) func = _get_eye_kernel(dtype) func(e_gpu, slice=slice(0, N*N, N+1)) return e_gpu
[docs]def pinv(a_gpu, rcond=1e-15, lib='cusolver'): """ Moore-Penrose pseudoinverse. Compute the Moore-Penrose pseudoinverse of the specified matrix. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Input matrix of shape `(m, n)`. rcond : float Singular values smaller than `rcond`*max(singular_values)` are set to zero. lib : str Library to use. May be either 'cula' or 'cusolver'. Returns ------- a_inv_gpu : pycuda.gpuarray.GPUArray Pseudoinverse of input matrix. Notes ----- Double precision is only supported if the standard version of the CULA Dense toolkit is installed. This function destroys the contents of the input matrix. If the input matrix is square, the pseudoinverse uses less memory. Examples -------- >>> import pycuda.driver as drv >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> a = np.asarray(np.random.rand(8, 4), np.float32) >>> a_gpu = gpuarray.to_gpu(a) >>> a_inv_gpu = linalg.pinv(a_gpu) >>> np.allclose(np.linalg.pinv(a), a_inv_gpu.get(), 1e-4) True >>> b = np.asarray(np.random.rand(8, 4)+1j*np.random.rand(8, 4), np.complex64) >>> b_gpu = gpuarray.to_gpu(b) >>> b_inv_gpu = linalg.pinv(b_gpu) >>> np.allclose(np.linalg.pinv(b), b_inv_gpu.get(), 1e-4) True Notes ----- The CUSOLVER backend cannot be used with CUDA 7.0. """ if lib == 'cula' and not _has_cula: raise NotImplementedError('CULA not installed') # Perform in-place SVD if the matrix is square to save memory: if a_gpu.shape[0] == a_gpu.shape[1]: u_gpu, s_gpu, vh_gpu = svd(a_gpu, 's', 'o', lib) else: u_gpu, s_gpu, vh_gpu = svd(a_gpu, 's', 's', lib) # Suppress very small singular values and convert the singular value array # to complex if the original matrix is complex so that the former can be # handled by dot_diag(): cutoff_gpu = gpuarray.max(s_gpu)*rcond real_ctype = tools.dtype_to_ctype(s_gpu.dtype) if a_gpu.dtype in [np.complex64, np.complex128]: if s_gpu.dtype == np.float32: complex_dtype = np.complex64 elif s_gpu.dtype == np.float64: complex_dtype = np.complex128 else: raise ValueError('cannot convert singular values to complex') s_complex_gpu = gpuarray.empty(len(s_gpu), complex_dtype) complex_ctype = tools.dtype_to_ctype(complex_dtype) cutoff_func = el.ElementwiseKernel("{real_ctype} *s_real, {complex_ctype} *s_complex," " {real_ctype} *cutoff".format(real_ctype=real_ctype, complex_ctype=complex_ctype), "if (s_real[i] > cutoff[0]) {s_complex[i] = 1/s_real[i];} else {s_complex[i] = 0;}") cutoff_func(s_gpu, s_complex_gpu, cutoff_gpu) # Compute the pseudoinverse without allocating a new diagonal matrix: return dot(vh_gpu, dot_diag(s_complex_gpu, u_gpu, 't'), 'c', 'c') else: cutoff_func = el.ElementwiseKernel("{real_ctype} *s, {real_ctype} *cutoff".format(real_ctype=real_ctype), "if (s[i] > cutoff[0]) {s[i] = 1/s[i];} else {s[i] = 0;}") cutoff_func(s_gpu, cutoff_gpu) # Compute the pseudoinverse without allocating a new diagonal matrix: return dot(vh_gpu, dot_diag(s_gpu, u_gpu, 't'), 'c', 'c')
@context_dependent_memoize def _get_tril_kernel(use_double, use_complex, cols): template = Template(""" #include <pycuda-complex.hpp> #if ${use_double} #if ${use_complex} #define FLOAT pycuda::complex<double> #else #define FLOAT double #endif #else #if ${use_complex} #define FLOAT pycuda::complex<float> #else #define FLOAT float #endif #endif __global__ void tril(FLOAT *a, unsigned int N) { unsigned int idx = blockIdx.y*blockDim.x*gridDim.x+ blockIdx.x*blockDim.x+threadIdx.x; unsigned int ix = idx/${cols}; unsigned int iy = idx%${cols}; if (idx < N) { if (ix < iy) a[idx] = 0.0; } } """) # Set this to False when debugging to make sure the compiled kernel is # not cached: cache_dir=None tmpl = template.substitute(use_double=use_double, use_complex=use_complex, cols=cols) mod = SourceModule(tmpl, cache_dir=cache_dir) return mod.get_function("tril")
[docs]def tril(a_gpu, overwrite=False, handle=None): """ Lower triangle of a matrix. Return the lower triangle of a square matrix. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Input matrix of shape `(m, m)` overwrite : bool (default: False) If true, zero out the upper triangle of the matrix. If false, return the result in a newly allocated matrix. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Returns ------- l_gpu : pycuda.gpuarray The lower triangle of the original matrix. Examples -------- >>> import pycuda.autoinit >>> import pycuda.driver as drv >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> a = np.asarray(np.random.rand(4, 4), np.float32) >>> a_gpu = gpuarray.to_gpu(a) >>> l_gpu = linalg.tril(a_gpu, False) >>> np.allclose(np.tril(a), l_gpu.get()) True """ if handle is None: handle = misc._global_cublas_handle alloc = misc._global_cublas_allocator if len(a_gpu.shape) != 2 or a_gpu.shape[0] != a_gpu.shape[1]: raise ValueError('matrix must be square') if a_gpu.dtype == np.float32: swap_func = cublas.cublasSswap copy_func = cublas.cublasScopy use_double = 0 use_complex = 0 elif a_gpu.dtype == np.float64: swap_func = cublas.cublasDswap copy_func = cublas.cublasDcopy use_double = 1 use_complex = 0 elif a_gpu.dtype == np.complex64: swap_func = cublas.cublasCswap copy_func = cublas.cublasCcopy use_double = 0 use_complex = 1 elif a_gpu.dtype == np.complex128: swap_func = cublas.cublasZswap copy_func = cublas.cublasZcopy use_double = 1 use_complex = 1 else: raise ValueError('unrecognized type') N = a_gpu.shape[0] # Get block/grid sizes: dev = misc.get_current_device() block_dim, grid_dim = misc.select_block_grid_sizes(dev, a_gpu.shape) tril = _get_tril_kernel(use_double, use_complex, cols=N) if not overwrite: a_orig_gpu = gpuarray.empty(a_gpu.shape, a_gpu.dtype, allocator=alloc) copy_func(handle, a_gpu.size, int(a_gpu.gpudata), 1, int(a_orig_gpu.gpudata), 1) tril(a_gpu, np.uint32(a_gpu.size), block=block_dim, grid=grid_dim) if overwrite: return a_gpu else: # Restore original contents of a_gpu: swap_func(handle, a_gpu.size, int(a_gpu.gpudata), 1, int(a_orig_gpu.gpudata), 1) return a_orig_gpu
@context_dependent_memoize def _get_triu_kernel(use_double, use_complex, cols): template = Template(""" #include <pycuda-complex.hpp> #if ${use_double} #if ${use_complex} #define FLOAT pycuda::complex<double> #else #define FLOAT double #endif #else #if ${use_complex} #define FLOAT pycuda::complex<float> #else #define FLOAT float #endif #endif __global__ void triu(FLOAT *a, unsigned int N) { unsigned int idx = blockIdx.y*blockDim.x*gridDim.x+ blockIdx.x*blockDim.x+threadIdx.x; unsigned int ix = idx/${cols}; unsigned int iy = idx%${cols}; if (idx < N) { if (ix > iy) a[idx] = 0.0; } } """) # Set this to False when debugging to make sure the compiled kernel is # not cached: cache_dir=None tmpl = template.substitute(use_double=use_double, use_complex=use_complex, cols=cols) mod = SourceModule(tmpl, cache_dir=cache_dir) return mod.get_function("triu")
[docs]def triu(a_gpu, k=0, overwrite=False, handle=None): """ Upper triangle of a matrix. Return the upper triangle of a square matrix. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Input matrix of shape `(m, m)` overwrite : bool (default: False) If true, zero out the lower triangle of the matrix. If false, return the result in a newly allocated matrix. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Returns ------- u_gpu : pycuda.gpuarray The upper triangle of the original matrix. Examples -------- >>> import pycuda.autoinit >>> import pycuda.driver as drv >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> a = np.asarray(np.random.rand(4, 4), np.float32) >>> a_gpu = gpuarray.to_gpu(a) >>> u_gpu = linalg.triu(a_gpu, False) >>> np.allclose(np.triu(a), u_gpu.get()) True """ if handle is None: handle = misc._global_cublas_handle alloc = misc._global_cublas_allocator if len(a_gpu.shape) != 2 or a_gpu.shape[0] != a_gpu.shape[1]: raise ValueError('matrix must be square') if a_gpu.dtype == np.float32: swap_func = cublas.cublasSswap copy_func = cublas.cublasScopy use_double = 0 use_complex = 0 elif a_gpu.dtype == np.float64: swap_func = cublas.cublasDswap copy_func = cublas.cublasDcopy use_double = 1 use_complex = 0 elif a_gpu.dtype == np.complex64: swap_func = cublas.cublasCswap copy_func = cublas.cublasCcopy use_double = 0 use_complex = 1 elif a_gpu.dtype == np.complex128: swap_func = cublas.cublasZswap copy_func = cublas.cublasZcopy use_double = 1 use_complex = 1 else: raise ValueError('unrecognized type') N = a_gpu.shape[0] # Get block/grid sizes: dev = misc.get_current_device() block_dim, grid_dim = misc.select_block_grid_sizes(dev, a_gpu.shape) tril = _get_triu_kernel(use_double, use_complex, cols=N) if not overwrite: a_orig_gpu = gpuarray.empty( (N,N), a_gpu.dtype, allocator=alloc) copy_func(handle, a_gpu.size, int(a_gpu.gpudata), 1, int(a_orig_gpu.gpudata), 1) tril(a_gpu, np.uint32(a_gpu.size), block=block_dim, grid=grid_dim) if overwrite: return a_gpu else: # Restore original contents of a_gpu: swap_func(handle, a_gpu.size, int(a_gpu.gpudata), 1, int(a_orig_gpu.gpudata), 1) return a_orig_gpu
[docs]def multiply(x_gpu, y_gpu, overwrite=False): """ Element-wise array multiplication (Hadamard product). Parameters ---------- x_gpu, y_gpu : pycuda.gpuarray.GPUArray Input arrays to be multiplied. dev : pycuda.driver.Device Device object to be used. overwrite : bool (default: False) If true, return the result in `y_gpu`. is false, return the result in a newly allocated array. Returns ------- z_gpu : pycuda.gpuarray.GPUArray The element-wise product of the input arrays. Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> x = np.asarray(np.random.rand(4, 4), np.float32) >>> y = np.asarray(np.random.rand(4, 4), np.float32) >>> x_gpu = gpuarray.to_gpu(x) >>> y_gpu = gpuarray.to_gpu(y) >>> z_gpu = linalg.multiply(x_gpu, y_gpu) >>> np.allclose(x*y, z_gpu.get()) True """ alloc = misc._global_cublas_allocator if x_gpu.shape != y_gpu.shape: raise ValueError('input arrays must have the same shape') if x_gpu.dtype not in [np.float32, np.float64, np.complex64, np.complex128]: raise ValueError('unrecognized type') x_ctype = tools.dtype_to_ctype(x_gpu.dtype) y_ctype = tools.dtype_to_ctype(y_gpu.dtype) if overwrite: func = el.ElementwiseKernel("{x_ctype} *x, {y_ctype} *y".format(x_ctype=x_ctype, y_ctype=y_ctype), "y[i] *= x[i]") func(x_gpu, y_gpu) return y_gpu else: result_type = np.result_type(x_gpu.dtype, y_gpu.dtype) z_gpu = gpuarray.empty(x_gpu.shape, result_type, allocator=alloc) func = \ el.ElementwiseKernel("{x_ctype} *x, {y_ctype} *y, {z_type} *z".format(x_ctype=x_ctype, y_ctype=y_ctype, z_type=tools.dtype_to_ctype(result_type)), "z[i] = x[i]*y[i]") func(x_gpu, y_gpu, z_gpu) return z_gpu
[docs]def norm(x_gpu, handle=None): """ Euclidean norm (2-norm) of real vector. Computes the Euclidean norm of an array. Parameters ---------- x_gpu : pycuda.gpuarray.GPUArray Input array. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Returns ------- nrm : real Euclidean norm of `x`. Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> x = np.asarray(np.random.rand(4, 4), np.float32) >>> x_gpu = gpuarray.to_gpu(x) >>> nrm = linalg.norm(x_gpu) >>> np.allclose(nrm, np.linalg.norm(x)) True >>> x_gpu = gpuarray.to_gpu(np.array([3+4j, 12-84j])) >>> linalg.norm(x_gpu) 85.0 """ if handle is None: handle = misc._global_cublas_handle if len(x_gpu.shape) != 1: x_gpu = x_gpu.ravel() # Compute inner product for 1D arrays: if (x_gpu.dtype == np.complex64): cublas_func = cublas.cublasScnrm2 elif (x_gpu.dtype == np.float32): cublas_func = cublas.cublasSnrm2 elif (x_gpu.dtype == np.complex128): cublas_func = cublas.cublasDznrm2 elif (x_gpu.dtype == np.float64): cublas_func = cublas.cublasDnrm2 else: raise ValueError('unsupported input type') return cublas_func(handle, x_gpu.size, x_gpu.gpudata, 1)
[docs]def scale(alpha, x_gpu, alpha_real=False, handle=None): """ Scale a vector by a factor alpha. Parameters ---------- alpha : scalar Scale parameter x_gpu : pycuda.gpuarray.GPUArray Input array. alpha_real : bool If `True` and `x_gpu` is complex, then one of the specialized versions `cublasCsscal` or `cublasZdscal` is used which might improve performance for large arrays. (By default, `alpha` is coerced to the corresponding complex type.) handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> x = np.asarray(np.random.rand(4, 4), np.float32) >>> x_gpu = gpuarray.to_gpu(x) >>> alpha = 2.4 >>> linalg.scale(alpha, x_gpu) >>> np.allclose(x_gpu.get(), alpha*x) True """ if handle is None: handle = misc._global_cublas_handle if len(x_gpu.shape) != 1: x_gpu = x_gpu.ravel() cublas_func = { np.float32: cublas.cublasSscal, np.float64: cublas.cublasDscal, np.complex64: cublas.cublasCsscal if alpha_real else cublas.cublasCscal, np.complex128: cublas.cublasZdscal if alpha_real else cublas.cublasZscal }.get(x_gpu.dtype.type, None) if cublas_func: return cublas_func(handle, x_gpu.size, alpha, x_gpu.gpudata, 1) else: raise ValueError('unsupported input type')
[docs]def inv(a_gpu, overwrite=False, ipiv_gpu=None, lib='cusolver'): """ Compute the inverse of a matrix. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Square (n, n) matrix to be inverted. overwrite : bool (default: False) Discard data in `a` (may improve performance). ipiv_gpu : pycuda.gpuarray.GPUArray (optional) Temporary array of size `n`, can be supplied to save allocations. lib : str Library to use. May be either 'cula' or 'cusolver'. Returns ------- ainv_gpu : pycuda.gpuarray.GPUArray Inverse of the matrix `a`. Raises ------ LinAlgError : If `a` is singular. ValueError : * If `a` is not square, or not 2-dimensional. * If ipiv was not None but had the wrong dtype or shape. Notes ----- When the CUSOLVER backend is selected, an extra copy will be performed if `overwrite` is set to transfer the result back into the input matrix. """ alloc = misc._global_cublas_allocator data_dtype = a_gpu.dtype.type if len(a_gpu.shape) != 2 or a_gpu.shape[0] != a_gpu.shape[1]: raise ValueError('expected square matrix') n = a_gpu.shape[0] if ipiv_gpu is None: alloc = misc._global_cublas_allocator ipiv_gpu = gpuarray.empty((n, 1), np.int32, allocator=alloc) elif ipiv_gpu.dtype != np.int32 or np.prod(ipiv_gpu.shape) < n: raise ValueError('invalid ipiv provided') if lib == 'cula': if not _has_cula: raise NotImplementedError('CULA not installed') if (data_dtype == np.complex64): getrf = cula.culaDeviceCgetrf getri = cula.culaDeviceCgetri elif (data_dtype == np.float32): getrf = cula.culaDeviceSgetrf getri = cula.culaDeviceSgetri elif (data_dtype == np.complex128): getrf = cula.culaDeviceZgetrf getri = cula.culaDeviceZgetri elif (data_dtype == np.float64): getrf = cula.culaDeviceDgetrf getri = cula.culaDeviceDgetri out = a_gpu if overwrite else a_gpu.copy() try: getrf(n, n, out.gpudata, n, ipiv_gpu.gpudata) getri(n, out.gpudata, n, ipiv_gpu.gpudata) except cula.culaDataError as e: raise LinAlgError(e) return out elif lib == 'cusolver': if (data_dtype == np.complex64): getrf = cusolver.cusolverDnCgetrf bufsize = cusolver.cusolverDnCgetrf_bufferSize getrs = cusolver.cusolverDnCgetrs elif (data_dtype == np.float32): getrf = cusolver.cusolverDnSgetrf bufsize = cusolver.cusolverDnSgetrf_bufferSize getrs = cusolver.cusolverDnSgetrs elif (data_dtype == np.complex128): getrf = cusolver.cusolverDnZgetrf bufsize = cusolver.cusolverDnZgetrf_bufferSize getrs = cusolver.cusolverDnZgetrs elif (data_dtype == np.float64): getrf = cusolver.cusolverDnDgetrf bufsize = cusolver.cusolverDnDgetrf_bufferSize getrs = cusolver.cusolverDnDgetrs try: in_gpu = a_gpu if overwrite else a_gpu.copy() Lwork = bufsize(misc._global_cusolver_handle, n, n, in_gpu.gpudata, n) Work = gpuarray.empty(Lwork, data_dtype, allocator=alloc) devInfo = gpuarray.empty(1, np.int32, allocator=alloc) getrf(misc._global_cusolver_handle, n, n, in_gpu.gpudata, n, Work.gpudata, ipiv_gpu.gpudata, devInfo.gpudata) except cusolver.CUSOLVER_ERROR as e: raise LinAlgError(e) d = devInfo.get()[0] if d != 0: raise LinAlgError(d) # raised for singular matrix or bad params try: b_gpu = eye(n, data_dtype) getrs(misc._global_cusolver_handle, cublas._CUBLAS_OP['n'], n, n, in_gpu.gpudata, n, ipiv_gpu.gpudata, b_gpu.gpudata, n, devInfo.gpudata) # Since CUSOLVER's getrs functions save their output in b_gpu, we # need to copy it back to the input matrix if overwrite is requested: if overwrite: a_gpu.set(b_gpu) return a_gpu else: return b_gpu except cusolver.CUSOLVER_ERROR as e: raise LinAlgError(e) else: raise ValueError('invalid library specified')
[docs]def trace(x_gpu, handle=None): """ Return the sum along the main diagonal of the array. Parameters ---------- x_gpu : pycuda.gpuarray.GPUArray Matrix to calculate the trace of. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Returns ------- trace : number trace of x_gpu """ if handle is None: handle = misc._global_cublas_handle if len(x_gpu.shape) != 2: raise ValueError('Only 2D matrices are supported') one = gpuarray.to_gpu(np.ones(1, dtype=x_gpu.dtype)) if (x_gpu.dtype == np.complex64): cublas_func = cublas.cublasCdotu elif (x_gpu.dtype == np.float32): cublas_func = cublas.cublasSdot elif (x_gpu.dtype == np.complex128): cublas_func = cublas.cublasZdotu elif (x_gpu.dtype == np.float64): cublas_func = cublas.cublasDdot if not cublas_func: raise ValueError('unsupported input type') if x_gpu.flags.c_contiguous: incx = x_gpu.shape[1] + 1 else: incx = x_gpu.shape[0] + 1 return cublas_func(handle, np.min(x_gpu.shape), x_gpu.gpudata, incx, one.gpudata, 0)
@context_dependent_memoize def _get_det_kernel(dtype): ctype = tools.dtype_to_ctype(dtype) args = "int* ipiv, {ctype}* x, unsigned xn".format(ctype=ctype) return ReductionKernel(dtype, "1.0", "a*b", "(ipiv[i] != i+1) ? -x[i*xn+i] : x[i*xn+i]", args)
[docs]def det(a_gpu, overwrite=False, workspace_gpu=None, ipiv_gpu=None, handle=None, lib='cusolver'): """ Compute the determinant of a square matrix. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray The square n*n matrix of which to calculate the determinant. overwrite : bool (default: False) Discard data in `a` (may improve performance). workspace_gpu : pycuda.gpuarray.GPUArray (optional) Temporary array of size Lwork (typically computed by CUSOLVER helper functions), can be supplied to save allocations. Only used if lib == 'cusolver'. ipiv_gpu : pycuda.gpuarray.GPUArray (optional) Temporary array of size n, can be supplied to save allocations. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. lib : str Library to use. May be either 'cula' or 'cusolver'. Returns ------- det : number determinant of a_gpu """ if handle is None: handle = misc._global_cublas_handle if lib == 'cula': if not _has_cula: raise NotImplementedError('CULA not installed') if len(a_gpu.shape) != 2: raise ValueError('Only 2D matrices are supported') if a_gpu.shape[0] != a_gpu.shape[1]: raise ValueError('Only square matrices are supported') if (a_gpu.dtype == np.complex64): getrf = cula.culaDeviceCgetrf elif (a_gpu.dtype == np.float32): getrf = cula.culaDeviceSgetrf elif (a_gpu.dtype == np.complex128): getrf = cula.culaDeviceZgetrf elif (a_gpu.dtype == np.float64): getrf = cula.culaDeviceDgetrf else: raise ValueError('unsupported input type') n = a_gpu.shape[0] alloc = misc._global_cublas_allocator if ipiv_gpu is None: ipiv_gpu = gpuarray.empty((n, 1), np.int32, allocator=alloc) elif ipiv_gpu.dtype != np.int32 or np.prod(ipiv_gpu.shape) < n: raise ValueError('invalid ipiv provided') out = a_gpu if overwrite else a_gpu.copy() try: getrf(n, n, out.gpudata, n, ipiv_gpu.gpudata) return _get_det_kernel(a_gpu.dtype)(ipiv_gpu, out, n).get() except cula.culaDataError as e: raise LinAlgError(e) elif lib == 'cusolver': if not _has_cusolver: raise NotImplementedError('CUSOLVER not installed') cusolverHandle = misc._global_cusolver_handle if (a_gpu.dtype == np.complex64): getrf = cusolver.cusolverDnCgetrf bufsize = cusolver.cusolverDnCgetrf_bufferSize elif (a_gpu.dtype == np.float32): getrf = cusolver.cusolverDnSgetrf bufsize = cusolver.cusolverDnSgetrf_bufferSize elif (a_gpu.dtype == np.complex128): getrf = cusolver.cusolverDnZgetrf bufsize = cusolver.cusolverDnZgetrf_bufferSize elif (a_gpu.dtype == np.float64): getrf = cusolver.cusolverDnDgetrf bufsize = cusolver.cusolverDnDgetrf_bufferSize else: raise ValueError('unsupported input type') out = a_gpu if overwrite else a_gpu.copy() n = a_gpu.shape[0] alloc = misc._global_cublas_allocator Lwork = bufsize(cusolverHandle, n, n, int(out.gpudata), n) if workspace_gpu is None: workspace_gpu = gpuarray.empty(Lwork, a_gpu.dtype, allocator=alloc) elif workspace_gpu.dtype != a_gpu.dtype or len(workspace_gpu) < Lwork: raise ValueError('invalid workspace provided') if ipiv_gpu is None: ipiv_gpu = gpuarray.empty((n, 1), np.int32, allocator=alloc) elif ipiv_gpu.dtype != np.int32 or np.prod(ipiv_gpu.shape) < n: raise ValueError('invalid ipiv provided') devInfo = gpuarray.empty(1, np.int32, allocator=alloc) try: getrf(cusolverHandle, n, n, out.gpudata, n, workspace_gpu.gpudata, ipiv_gpu.gpudata, devInfo.gpudata) return _get_det_kernel(a_gpu.dtype)(ipiv_gpu, out, n).get() except cusolver.CUSOLVER_ERROR as e: raise LinAlgError(e) else: raise ValueError('invalid library specified')
[docs]def qr(a_gpu, mode='reduced', handle=None, lib='cusolver'): """ QR Decomposition. Factor the real/complex matrix `a` as `QR`, where `Q` is an orthonormal/unitary matrix and `R` is an upper triangular matrix. Parameters ---------- a_gpu: pycuda.gpuarray.GPUArray Real/complex input matrix `a` with dimensions `(m, n)`. `a` is assumed to be `m`>=`n`. mode : {'reduced', 'economic', 'r'} 'reduced' : returns `Q`, `R` with dimensions `(m, k)` and `(k, n)` (default). 'economic' : returns `Q` only with dimensions `(m, k)`. 'r' : returns `R` only with dimensions `(k, n)` with `k`=min`(m,n)`. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. lib : str Library to use. May be either 'cula' or 'cusolver'. Returns ------- q_gpu : pycuda.gpuarray.GPUArray Orthonormal/unitary matrix (depending on whether or not `A` is real/complex). r_gpu : pycuda.gpuarray.GPUArray The upper-triangular matrix. Notes ----- Double precision is only supported if the standard version of the CULA Dense toolkit is installed. This function destroys the contents of the input matrix. Arrays are assumed to be stored in column-major order, i.e., order='F'. Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> linalg.init() >>> # Rectangular matrix A, np.float32 >>> A = np.array(np.random.randn(9, 7), np.float32, order='F') >>> A_gpu = gpuarray.to_gpu(A) >>> Q_gpu, R_gpu = linalg.qr(A_gpu, 'reduced') >>> np.allclose(A, np.dot(Q_gpu.get(), R_gpu.get()), 1e-4) True >>> # Square matrix A, np.complex128 >>> A = np.random.randn(9, 9) + 1j*np.random.randn(9, 9) >>> A = np.asarray(A, np.complex128, order='F') >>> A_gpu = gpuarray.to_gpu(A) >>> Q_gpu, R_gpu = linalg.qr(A_gpu, 'reduced') >>> np.allclose(A, np.dot(Q_gpu.get(), R_gpu.get()), 1e-4) True >>> np.allclose(np.identity(Q_gpu.shape[0]) + 1j*0, np.dot(Q_gpu.get().conj().T, Q_gpu.get()), 1e-4) True >>> # Numpy QR and CULA QR >>> A = np.array(np.random.randn(9, 7), np.float32, order='F') >>> Q, R = np.linalg.qr(A, 'reduced') >>> a_gpu = gpuarray.to_gpu(A) >>> Q_gpu, R_gpu = linalg.qr(a_gpu, 'reduced') >>> np.allclose(Q, Q_gpu.get(), 1e-4) True >>> np.allclose(R, R_gpu.get(), 1e-4) True """ alloc = misc._global_cublas_allocator if handle is None: handle = misc._global_cublas_handle data_type = a_gpu.dtype.type if lib == 'cula': if not _has_cula: raise NotImplementedError('CULA not installed') # The free version of CULA only supports single precision floating # point numbers: real_type = np.float32 if data_type == np.complex64: func_qr = cula.culaDeviceCgeqrf func_q = cula.culaDeviceCungqr copy_func = cublas.cublasCcopy use_double = 0 use_complex = 1 elif data_type == np.float32: func_qr = cula.culaDeviceSgeqrf func_q = cula.culaDeviceSorgqr copy_func = cublas.cublasScopy use_double = 0 use_complex = 0 else: if cula._libcula_toolkit == 'standard': if data_type == np.complex128: func_qr = cula.culaDeviceZgeqrf func_q = cula.culaDeviceZungqr copy_func = cublas.cublasZcopy use_double = 1 use_complex = 1 elif data_type == np.float64: func_qr = cula.culaDeviceDgeqrf func_q = cula.culaDeviceDorgqr copy_func = cublas.cublasDcopy use_double = 1 use_complex = 0 else: raise ValueError('unsupported type') real_type = np.float64 else: raise ValueError('double precision not supported') elif lib == 'cusolver': if not _has_cusolver: raise NotImplementedError('CUSOLVER not installed') cusolverHandle = misc._global_cusolver_handle if data_type == np.complex64: func_qr = cusolver.cusolverDnCgeqrf func_q = cusolver.cusolverDnCungqr bufsize_qr = cusolver.cusolverDnCgeqrf_bufferSize bufsize_q = cusolver.cusolverDnCungqr_bufferSize copy_func = cublas.cublasCcopy use_double = 0 use_complex = 1 elif data_type == np.float32: func_qr = cusolver.cusolverDnSgeqrf func_q = cusolver.cusolverDnSorgqr bufsize_qr = cusolver.cusolverDnSgeqrf_bufferSize bufsize_q = cusolver.cusolverDnSorgqr_bufferSize copy_func = cublas.cublasScopy use_double = 0 use_complex = 0 elif data_type == np.complex128: real_type = np.float64 func_qr = cusolver.cusolverDnZgeqrf func_q = cusolver.cusolverDnZungqr bufsize_qr = cusolver.cusolverDnZgeqrf_bufferSize bufsize_q = cusolver.cusolverDnZungqr_bufferSize copy_func = cublas.cublasZcopy use_double = 1 use_complex = 1 elif data_type == np.float64: real_type = np.float64 func_qr = cusolver.cusolverDnDgeqrf func_q = cusolver.cusolverDnDorgqr bufsize_qr = cusolver.cusolverDnDgeqrf_bufferSize bufsize_q = cusolver.cusolverDnDorgqr_bufferSize copy_func = cublas.cublasDcopy use_double = 1 use_complex = 0 else: raise ValueError('unsupported type') else: raise ValueError('invalid library specified') # CUDA assumes that arrays are stored in column-major order m, n = a_gpu.shape if m<n and mode != 'r': raise ValueError('if m < n only the mode "r" is supported') # Set the leading dimension of the input matrix: lda = max(1, m) # Set k: k = min(m, n) # Set the leading dimension and allocate u: tau_gpu = gpuarray.empty(k, data_type, allocator=alloc, order='F') # Compute QR and check error status: if lib == 'cula': func_qr(m, n, int(a_gpu.gpudata), lda, int(tau_gpu.gpudata)) else: Lwork = bufsize_qr(cusolverHandle, m, n, int(a_gpu.gpudata), m) workspace_gpu = gpuarray.empty(Lwork, data_type, allocator=alloc) devInfo = gpuarray.empty(1, np.int32, allocator=alloc) func_qr(cusolverHandle, m, n, int(a_gpu.gpudata), lda, int(tau_gpu.gpudata), int(workspace_gpu.gpudata), Lwork, int(devInfo.gpudata)) if mode != 'economic': # Get upper triangular matrix R with dimensions (n,n) # Note: _get_tril_kernel returns the upper triangular r_gpu = gpuarray.empty((m, n), data_type, allocator=alloc, order='F') copy_func(handle, a_gpu.size, int(a_gpu.gpudata), 1, int(r_gpu.gpudata), 1) # tril dev = misc.get_current_device() block_dim, grid_dim = misc.select_block_grid_sizes(dev, r_gpu.shape) tril = _get_tril_kernel(use_double, use_complex, cols=m) #cols are here rows tril(r_gpu, np.uint32(r_gpu.size), block=block_dim, grid=grid_dim) # Mode r if mode == 'r': return r_gpu[:k, :n] # Compute Q and check error status: if lib == 'cula': func_q(m, n, k, int(a_gpu.gpudata), lda, int(tau_gpu.gpudata)) # Free internal CULA memory: cula.culaFreeBuffers() else: Lwork = bufsize_q(cusolverHandle, m, n, k, int(a_gpu.gpudata), lda, int(tau_gpu.gpudata)) workspace_gpu = gpuarray.empty(Lwork, data_type, allocator=alloc) # Reuse devInfo allocated earlier: func_q(cusolverHandle, m, n, k, int(a_gpu.gpudata), lda, int(tau_gpu.gpudata), int(workspace_gpu.gpudata), Lwork, int(devInfo.gpudata)) q_gpu = a_gpu # Mode economic if mode == 'reduced': return q_gpu, r_gpu[:k, :n] if mode == 'economic': return q_gpu
[docs]def eig(a_gpu, jobvl='N', jobvr='V', imag='F', lib='cusolver'): """ Eigendecomposition of a matrix. Compute the eigenvalues `w` for a real/complex square matrix `a` and (optionally) the real left and right eigenvectors `vl`, `vr`. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Real/complex input matrix `a` with dimensions `(m, n)`. jobvl : {'V', 'N'} 'V' : returns `vl`, the left eigenvectors of `a` with dimensions `(m, m)`. 'N' : left eigenvectors are not computed. jobvr : {'V', 'N'} 'V' : returns `vr`, the right eigenvectors of `a` with dimensions `(m, m)`, (default). 'N' : right eigenvectors are not computed. imag : {'F', 'T'} 'F' : imaginary parts of a real matrix are not returned (default). 'T' : returns the imaginary parts of a real matrix (only relevant in the case of single/double precision ). lib : str Library to use. May be either 'cula' or 'cusolver'. If using 'cusolver', only symmetric/Hermitian matrices are supported. Returns ------- vr_gpu : pycuda.gpuarray.GPUArray The normalized (Euclidean norm equal to 1) right eigenvectors, such that the column `vr[:,i]` is the eigenvector corresponding to the eigenvalue `w[i]`. w_gpu : pycuda.gpuarray.GPUArray Array containing the real/complex eigenvalues, not necessarily ordered. `w` is of length `m`. vl_gpu : pycuda.gpuarray.GPUArray The normalized (Euclidean norm equal to 1) left eigenvectors, such that the column `vl[:,i]` is the eigenvector corresponding to the eigenvalue `w[i]`. Notes ----- Double precision is only supported if the standard version of the CULA Dense toolkit is installed. This function destroys the contents of the input matrix. Arrays are expected to be stored in column-major order, i.e., order='F'. Examples -------- >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> import numpy as np >>> from skcuda import linalg >>> linalg.init() >>> # Compute right eigenvectors of a symmetric matrix A and verify A*vr = vr*w >>> a = np.array(([1,3],[3,5]), np.float32, order='F') >>> a_gpu = gpuarray.to_gpu(a) >>> vr_gpu, w_gpu = linalg.eig(a_gpu, 'N', 'V') >>> np.allclose(np.dot(a, vr_gpu.get()), np.dot(vr_gpu.get(), np.diag(w_gpu.get())), 1e-4) True >>> # Compute left eigenvectors of a symmetric matrix A and verify vl.T*A = w*vl.T >>> a = np.array(([1,3],[3,5]), np.float32, order='F') >>> a_gpu = gpuarray.to_gpu(a) >>> w_gpu, vl_gpu = linalg.eig(a_gpu, 'V', 'N') >>> np.allclose(np.dot(vl_gpu.get().T, a), np.dot(np.diag(w_gpu.get()), vl_gpu.get().T), 1e-4) True >>> # Compute left/right eigenvectors of a symmetric matrix A and verify A = vr*w*vl.T >>> a = np.array(([1,3],[3,5]), np.float32, order='F') >>> a_gpu = gpuarray.to_gpu(a) >>> vr_gpu, w_gpu, vl_gpu = linalg.eig(a_gpu, 'V', 'V') >>> np.allclose(a, np.dot(vr_gpu.get(), np.dot(np.diag(w_gpu.get()), vl_gpu.get().T)), 1e-4) True >>> # Compute eigenvalues of a square matrix A and verify that trace(A)=sum(w) >>> a = np.array(np.random.rand(9,9), np.float32, order='F') >>> a_gpu = gpuarray.to_gpu(a) >>> w_gpu = linalg.eig(a_gpu, 'N', 'N') >>> np.allclose(np.trace(a), sum(w_gpu.get()), 1e-4) True >>> # Compute eigenvalues of a real valued matrix A possessing complex e-valuesand >>> a = np.array(np.array(([1, -2], [1, 3])), np.float32, order='F') >>> a_gpu = gpuarray.to_gpu(a) >>> w_gpu = linalg.eig(a_gpu, 'N', 'N', imag='T') True >>> # Compute eigenvalues of a complex valued matrix A and verify that trace(A)=sum(w) >>> a = np.array(np.random.rand(2,2) + 1j*np.random.rand(2,2), np.complex64, order='F') >>> a_gpu = gpuarray.to_gpu(a) >>> w_gpu = linalg.eig(a_gpu, 'N', 'N') >>> np.allclose(np.trace(a), sum(w_gpu.get()), 1e-4) True """ alloc = misc._global_cublas_allocator # The free version of CULA only supports single precision floating # point numbers: data_type = a_gpu.dtype.type real_type = np.float32 if lib == 'cula': if not _has_cula: raise NotImplementedError('CULA not installed') if data_type == np.complex64: func = cula.culaDeviceCgeev imag='F' elif data_type == np.float32: func = cula.culaDeviceSgeev else: if cula._libcula_toolkit == 'standard': if data_type == np.complex128: func = cula.culaDeviceZgeev imag='F' elif data_type == np.float64: func = cula.culaDeviceDgeev else: raise ValueError('unsupported type') real_type = np.float64 else: raise ValueError('double precision not supported') elif lib == 'cusolver': if not _has_cusolver: raise NotImplementedError('CUSOLVER not installed') cusolverHandle = misc._global_cusolver_handle # FIXME: Seems like CUSOLVER only handles symmetric or Hermitian matrices, # look into cusolverDn<t>sygvd if data_type == np.complex64: func = cusolver.cusolverDnCheevd bufsize = cusolver.cusolverDnCheevd_bufferSize elif data_type == np.float32: func = cusolver.cusolverDnSsyevd bufsize = cusolver.cusolverDnSsyevd_bufferSize elif data_type == np.complex128: func = cusolver.cusolverDnZheevd bufsize = cusolver.cusolverDnZheevd_bufferSize elif data_type == np.float64: real_type = np.float64 func = cusolver.cusolverDnDsyevd bufsize = cusolver.cusolverDnDsyevd_bufferSize else: raise ValueError('unsupported type') else: raise ValueError('invalid library specified') # CUDA assumes that arrays are stored in column-major order n, m = a_gpu.shape #Check input if(m!=n): raise ValueError('matrix is not square!') jobvl = jobvl.upper() jobvr = jobvr.upper() if jobvl not in ['N', 'V'] : raise ValueError('jobvl has to be "N" or "V" ') if jobvr not in ['N', 'V'] : raise ValueError('jobvr has to be "N" or "V" ') if imag not in ['T', 'F'] : raise ValueError('imag has to be "T" or "F" ') if lib == 'cula': w_gpu = gpuarray.empty(m, data_type, order="F", allocator=alloc) # Allocate vl, vr, and w: vl_gpu = gpuarray.empty((m,m), data_type, order="F", allocator=alloc) vr_gpu = gpuarray.empty((m,m), data_type, order="F", allocator=alloc) if data_type in (np.complex64, np.complex128): #culaDeviceCgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr) func(jobvl, jobvr, m, a_gpu.gpudata, m, w_gpu.gpudata, vl_gpu.gpudata , m , vr_gpu.gpudata, m ) elif data_type in (np.float32, np.float64): wi_gpu = gpuarray.zeros(m, data_type, order="F", allocator=alloc) func(jobvl, jobvr, m, a_gpu.gpudata, m, w_gpu.gpudata, wi_gpu.gpudata, vl_gpu.gpudata , m , vr_gpu.gpudata, m ) if imag == 'T': w_gpu = w_gpu + (1j)*wi_gpu # Free internal CULA memory: cula.culaFreeBuffers() if jobvl == 'N' and jobvr == 'N': return w_gpu elif jobvl == 'V' and jobvr == 'V': return vr_gpu, w_gpu, vl_gpu elif jobvl == 'V' and jobvr == 'N': return w_gpu, vl_gpu, elif jobvl == 'N' and jobvr == 'V': return vr_gpu, w_gpu elif lib == 'cusolver': if data_type in (np.float32,np.complex64): eigv_data_type = np.float32 elif data_type in ( np.float64, np.complex128): eigv_data_type = np.float64 w_gpu = gpuarray.empty(m, eigv_data_type, order="F", allocator=alloc) if jobvl == 'V': raise NotImplementedError('CUSOLVER supports only right eigenvectors') if jobvr == 'V': jobz = cusolver._CUSOLVER_EIG_MODE['CUSOLVER_EIG_MODE_VECTOR'] # Copy a_gpu, so we don't destroy it a_copy_gpu = a_gpu.copy() else: jobz = cusolver._CUSOLVER_EIG_MODE['CUSOLVER_EIG_MODE_NOVECTOR'] a_copy_gpu = a_gpu # Since we have the full matrix and assuming symmetry, fill mode # hopefully doesn't matter uplo = cublas._CUBLAS_FILL_MODE[0] Lwork = bufsize( cusolverHandle, jobz, uplo, n, a_copy_gpu.gpudata, m, w_gpu.gpudata, ) Work = gpuarray.empty(Lwork, data_type, allocator=alloc) devInfo = gpuarray.empty(1, np.int32, allocator=alloc) func(cusolverHandle, jobz, uplo, n, a_copy_gpu.gpudata, m, w_gpu.gpudata, Work.gpudata, Lwork, devInfo.gpudata) if jobz == cusolver._CUSOLVER_EIG_MODE['CUSOLVER_EIG_MODE_VECTOR']: return a_copy_gpu, w_gpu else: return w_gpu else: raise ValueError('invalid library specified')
@context_dependent_memoize def _get_vander_kernel(use_double, use_complex, rows, cols): template = Template(""" #include <pycuda-complex.hpp> #if ${use_double} #if ${use_complex} #define FLOAT pycuda::complex<double> #else #define FLOAT double #endif #else #if ${use_complex} #define FLOAT pycuda::complex<float> #else #define FLOAT float #endif #endif __global__ void vander(FLOAT *a, FLOAT *b, int m, int n) { unsigned int ix; unsigned int r = blockIdx.x*blockDim.x+threadIdx.x; if(r < m) { for(int i=1; i<n; ++i) { ix = r + m*i ; a[ix] = a[r + m*(i-1)] * b[r]; } } } """) # Set this to False when debugging to make sure the compiled kernel is # not cached: cache_dir=None tmpl = template.substitute(use_double=use_double, use_complex=use_complex, rows=rows, cols=cols) mod = SourceModule(tmpl, cache_dir=cache_dir) return mod.get_function("vander")
[docs]def vander(a_gpu, n=None, handle=None): """ Generate a Vandermonde matrix. A Vandermonde matrix (named for Alexandre- Theophile Vandermonde) is a matrix where the columns are powers of the input vector, i.e., the `i-th` column is the input vector raised element-wise to the power of `i`. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Real/complex 1-D input array of shape `(m, 1)`. n : int, optional Number of columns in the Vandermonde matrix. If `n` is not specified, a square array is returned `(m,m)`. Returns ------- vander_gpu : pycuda.gpuarray Vandermonde matrix of shape `(m,n)`. Examples -------- >>> import pycuda.autoinit >>> import pycuda.gpuarray as gpuarray >>> import numpy as np >>> import skcuda.linalg as linalg >>> a = np.array(np.array([1, 2, 3]), np.float32, order='F') >>> a_gpu = gpuarray.to_gpu(a) >>> v_gpu = linalg.vander(a_gpu, n=4) >>> np.allclose(v_gpu.get(), np.fliplr(np.vander(a, 4)), atol=1e-6) True """ if handle is None: handle = misc._global_cublas_handle alloc = misc._global_cublas_allocator data_type = a_gpu.dtype.type if a_gpu.dtype == np.float32: use_double = 0 use_complex = 0 elif a_gpu.dtype == np.float64: use_double = 1 use_complex = 0 elif a_gpu.dtype == np.complex64: use_double = 0 use_complex = 1 elif a_gpu.dtype == np.complex128: use_double = 1 use_complex = 1 else: raise ValueError('unrecognized type') m = a_gpu.shape[0] if n == None: n = m vander_gpu = gpuarray.empty((m, n), data_type, order='F', allocator=alloc) vander_gpu[ : , 0 ] = vander_gpu[ : , 0 ] * 0 + 1 # Get block/grid sizes: dev = misc.get_current_device() block_dim, grid_dim = misc.select_block_grid_sizes(dev, vander_gpu.shape) # Allocate Vandermonde matrix: vander = _get_vander_kernel(use_double, use_complex, rows=m, cols=n) # Call kernel: vander(vander_gpu, a_gpu, np.uint32(m), np.uint32(n), block=block_dim, grid=grid_dim) # Return return vander_gpu
[docs]def dmd(a_gpu, k=None, modes='exact', return_amplitudes=False, return_vandermonde=False, handle=None): """ Dynamic Mode Decomposition. Dynamic Mode Decomposition (DMD) is a data processing algorithm which allows to decompose a matrix `a` in space and time. The matrix `a` is decomposed as `a = FBV`, where the columns of `F` contain the dynamic modes. The modes are ordered corresponding to the amplitudes stored in the diagonal matrix `B`. `V` is a Vandermonde matrix describing the temporal evolution. Parameters ---------- a_gpu : pycuda.gpuarray.GPUArray Real/complex input matrix `a` with dimensions `(m, n)`. k : int, optional If `k < (n-1)` low-rank Dynamic Mode Decomposition is computed. modes : `{'standard', 'exact'}` 'standard' : uses the standard definition to compute the dynamic modes, `F = U * W`. 'exact' : computes the exact dynamic modes, `F = Y * V * (S**-1) * W`. return_amplitudes : bool `{True, False}` True: return amplitudes in addition to dynamic modes. return_vandermonde : bool `{True, False}` True: return Vandermonde matrix in addition to dynamic modes and amplitudes. handle : int CUBLAS context. If no context is specified, the default handle from `skcuda.misc._global_cublas_handle` is used. Returns ------- f_gpu : pycuda.gpuarray.GPUArray Matrix containing the dynamic modes of shape `(m, n-1)` or `(m, k)`. b_gpu : pycuda.gpuarray.GPUArray 1-D array containing the amplitudes of length `min(n-1, k)`. v_gpu : pycuda.gpuarray.GPUArray Vandermonde matrix of shape `(n-1, n-1)` or `(k, n-1)`. Notes ----- Double precision is only supported if the standard version of the CULA Dense toolkit is installed. This function destroys the contents of the input matrix. Arrays are assumed to be stored in column-major order, i.e., order='F'. References ---------- M. R. Jovanovic, P. J. Schmid, and J. W. Nichols. "Low-rank and sparse dynamic mode decomposition." Center for Turbulence Research Annual Research Briefs (2012): 139-152. J. H. Tu, et al. "On dynamic mode decomposition: theory and applications." arXiv preprint arXiv:1312.0041 (2013). Examples -------- >>> #Numpy >>> import numpy as np >>> #Plot libs >>> import matplotlib.pyplot as plt >>> from mpl_toolkits.mplot3d import Axes3D >>> from matplotlib import cm >>> #GPU DMD libs >>> import pycuda.gpuarray as gpuarray >>> import pycuda.autoinit >>> from skcuda import linalg, rlinalg >>> linalg.init() >>> # Define time and space discretizations >>> x=np.linspace( -15, 15, 200) >>> t=np.linspace(0, 8*np.pi , 80) >>> dt=t[2]-t[1] >>> X, T = np.meshgrid(x,t) >>> # Create two patio-temporal patterns >>> F1 = 0.5* np.cos(X)*(1.+0.* T) >>> F2 = ( (1./np.cosh(X)) * np.tanh(X)) *(2.*np.exp(1j*2.8*T)) >>> # Add both signals >>> F = (F1+F2) >>> #Plot dataset >>> fig = plt.figure() >>> ax = fig.add_subplot(231, projection='3d') >>> ax = fig.gca(projection='3d') >>> surf = ax.plot_surface(X, T, F, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=True) >>> ax.set_zlim(-1, 1) >>> plt.title('F') >>> ax = fig.add_subplot(232, projection='3d') >>> ax = fig.gca(projection='3d') >>> surf = ax.plot_surface(X, T, F1, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) >>> ax.set_zlim(-1, 1) >>> plt.title('F1') >>> ax = fig.add_subplot(233, projection='3d') >>> ax = fig.gca(projection='3d') >>> surf = ax.plot_surface(X, T, F2, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) >>> ax.set_zlim(-1, 1) >>> plt.title('F2') >>> #Dynamic Mode Decomposition >>> F_gpu = np.array(F.T, np.complex64, order='F') >>> F_gpu = gpuarray.to_gpu(F_gpu) >>> Fmodes_gpu, b_gpu, V_gpu, omega_gpu = linalg.dmd(F_gpu, k=2, modes='exact', return_amplitudes=True, return_vandermonde=True) >>> omega = omega_gpu.get() >>> plt.scatter(omega.real, omega.imag, marker='o', c='r') >>> #Recover original signal >>> F1tilde = np.dot(Fmodes_gpu[:,0:1].get() , np.dot(b_gpu[0].get(), V_gpu[0:1,:].get() ) ) >>> F2tilde = np.dot(Fmodes_gpu[:,1:2].get() , np.dot(b_gpu[1].get(), V_gpu[1:2,:].get() ) ) >>> #Plot DMD modes >>> #Mode 0 >>> ax = fig.add_subplot(235, projection='3d') >>> ax = fig.gca(projection='3d') >>> surf = ax.plot_surface(X[0:F1tilde.shape[1],:], T[0:F1tilde.shape[1],:], F1tilde.T, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) >>> ax.set_zlim(-1, 1) >>> plt.title('F1_tilde') >>> #Mode 1 >>> ax = fig.add_subplot(236, projection='3d') >>> ax = fig.gca(projection='3d') >>> surf = ax.plot_surface(X[0:F2tilde.shape[1],:], T[0:F2tilde.shape[1],:], F2tilde.T, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) >>> ax.set_zlim(-1, 1) >>> plt.title('F2_tilde') >>> plt.show() """ #************************************************************************* #*** Author: N. Benjamin Erichson <nbe@st-andrews.ac.uk> *** #*** <2015> *** #*** License: BSD 3 clause *** #************************************************************************* if not _has_cula: raise NotImplementedError('CULA not installed') if handle is None: handle = misc._global_cublas_handle alloc = misc._global_cublas_allocator # The free version of CULA only supports single precision floating data_type = a_gpu.dtype.type real_type = np.float32 if data_type == np.complex64: cula_func_gesvd = cula.culaDeviceCgesvd cublas_func_gemm = cublas.cublasCgemm cublas_func_dgmm = cublas.cublasCdgmm cula_func_gels = cula.culaDeviceCgels copy_func = cublas.cublasCcopy transpose_func = cublas.cublasCgeam alpha = np.complex64(1.0) beta = np.complex64(0.0) TRANS_type = 'C' isreal = False elif data_type == np.float32: cula_func_gesvd = cula.culaDeviceSgesvd cublas_func_gemm = cublas.cublasSgemm cublas_func_dgmm = cublas.cublasSdgmm cula_func_gels = cula.culaDeviceSgels copy_func = cublas.cublasScopy transpose_func = cublas.cublasSgeam alpha = np.float32(1.0) beta = np.float32(0.0) TRANS_type = 'T' isreal = True else: if cula._libcula_toolkit == 'standard': if data_type == np.complex128: cula_func_gesvd = cula.culaDeviceZgesvd cublas_func_gemm = cublas.cublasZgemm cublas_func_dgmm = cublas.cublasZdgmm cula_func_gels = cula.culaDeviceZgels copy_func = cublas.cublasZcopy transpose_func = cublas.cublasZgeam alpha = np.complex128(1.0) beta = np.complex128(0.0) TRANS_type = 'C' isreal = False elif data_type == np.float64: cula_func_gesvd = cula.culaDeviceDgesvd cublas_func_gemm = cublas.cublasDgemm cublas_func_dgmm = cublas.cublasDdgmm cula_func_gels = cula.culaDeviceDgels copy_func = cublas.cublasDcopy transpose_func = cublas.cublasDgeam alpha = np.float64(1.0) beta = np.float64(0.0) TRANS_type = 'T' isreal = True else: raise ValueError('unsupported type') real_type = np.float64 else: raise ValueError('double precision not supported') #CUDA assumes that arrays are stored in column-major order m, n = a_gpu.shape nx = n-1 #Set k if k == None : k = nx if k > nx or k < 1: raise ValueError('k is not valid') #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Split data into lef and right snapshot sequence #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Note: we need a copy of X_gpu, because SVD destroys X_gpu #While Y_gpu is just a pointer X_gpu = gpuarray.empty((m, n), data_type, order="F", allocator=alloc) copy_func(handle, X_gpu.size, int(a_gpu.gpudata), 1, int(X_gpu.gpudata), 1) X_gpu = X_gpu[:, :nx] Y_gpu = a_gpu[:, 1:] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Singular Value Decomposition #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #gesvd(jobu, jobvt, m, n, int(a), lda, int(s), int(u), ldu, int(vt), ldvt) #Parameters #---------- #a : pycuda.gpuarray.GPUArray of shape (m, n) #jobu : {'A', 'S', 'O', 'N'} # If 'A', return the full `u` matrix with shape `(m, m)`. # If 'S', return the `u` matrix with shape `(m, nx)`. # If 'O', return the `u` matrix with shape `(m, nx) without # allocating a new matrix. #jobvt : {'A', 'S', 'O', 'N'} # If 'A', return the full `vh` matrix with shape `(nx, nx)`. # If 'S', return the `vh` matrix with shape `(nx, nx)`. # If 'O', return the `vh` matrix with shape `(nx, nx) without # allocating a new matrix. # #Returns #------- #u : pycuda.gpuarray.GPUArray # Unitary matrix of shape `(m, m)` or `(m, nx)` #s : pycuda.gpuarray.GPUArray # Array containing the singular values, sorted such that `s[i] >= s[i+1]`. # `s` is of length `min(m, nx)`. #v : pycuda.gpuarray.GPUArray # Unitary matrix of shape `(nx, nx)` or `(nx, nx)` #Allocate s, U, Vt for economic SVD #Note: singular values are always real #Allocate s, U, Vt for economic SVD #Note: singular values are always real s_gpu = gpuarray.empty(nx, real_type, order="F", allocator=alloc) U_gpu = gpuarray.empty((m,nx), data_type, order="F", allocator=alloc) Vh_gpu = gpuarray.empty((nx,nx), data_type, order="F", allocator=alloc) #Economic SVD cula_func_gesvd('S', 'S', m, nx, int(X_gpu.gpudata), m, int(s_gpu.gpudata), int(U_gpu.gpudata), m, int(Vh_gpu.gpudata), nx) #Low-rank DMD: trancate SVD if k < nx if k != nx: s_gpu = s_gpu[:k] U_gpu = U_gpu[: , :k] #Vt_gpu = Vt_gpu[:k , : ] Vh_gpu = Vh_gpu[:k , : ] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Solve the LS problem to find estimate for M using the pseudo-inverse #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #real: M = U.T * Y * Vt.T * S**-1 #complex: M = U.H * Y * Vt.H * S**-1 #Let G = Y * Vt.H * S**-1, hence M = M * G #Allocate G and M G_gpu = gpuarray.empty((m,k), data_type, order="F", allocator=alloc) M_gpu = gpuarray.empty((k,k), data_type, order="F", allocator=alloc) #i) s = s **-1 (inverse) if data_type == np.complex64 or data_type == np.complex128: s_gpu = 1/s_gpu s_gpu = s_gpu + 1j * gpuarray.zeros_like(s_gpu) else: s_gpu = 1.0/s_gpu #ii) real/complex: scale Vs = Vt* x diag(s**-1) Vs_gpu = gpuarray.empty((nx,k), data_type, order="F", allocator=alloc) lda = max(1, Vh_gpu.strides[1] // Vh_gpu.dtype.itemsize) ldb = max(1, Vs_gpu.strides[1] // Vs_gpu.dtype.itemsize) transpose_func(handle, TRANS_type, TRANS_type, nx, k, alpha, int(Vh_gpu.gpudata), lda, beta, int(Vh_gpu.gpudata), lda, int(Vs_gpu.gpudata), ldb) cublas_func_dgmm(handle, 'r', nx, k, int(Vs_gpu.gpudata), nx, int(s_gpu.gpudata), 1 , int(Vs_gpu.gpudata), nx) #iii) real: G = Y * Vs , complex: G = Y x Vs cublas_func_gemm(handle, 'n', 'n', m, k, nx, alpha, int(Y_gpu.gpudata), m, int(Vs_gpu.gpudata), nx, beta, int(G_gpu.gpudata), m ) #iv) real/complex: M = U* x G cublas_func_gemm(handle, TRANS_type, 'n', k, k, m, alpha, int(U_gpu.gpudata), m, int(G_gpu.gpudata), m, beta, int(M_gpu.gpudata), k ) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Eigen Decomposition #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Note: If a_gpu is real the imag part is omitted Vr_gpu, w_gpu = eig(M_gpu, 'N', 'V', 'F') omega = cumath.log(w_gpu) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Compute DMD Modes #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F_gpu = gpuarray.empty((m,k), data_type, order="F", allocator=alloc) modes = modes.lower() if modes == 'exact': #Compute (exact) DMD modes: F = Y * V * S**-1 * W = G * W cublas_func_gemm(handle, 'n', 'n', m, k, k, alpha, G_gpu.gpudata, m, Vr_gpu.gpudata, k, beta, G_gpu.gpudata, m ) F_gpu_temp = G_gpu elif modes == 'standard': #Compute (standard) DMD modes: F = U * W cublas_func_gemm(handle, 'n', 'n', m, k, k, alpha, U_gpu.gpudata, m, Vr_gpu.gpudata, k, beta, U_gpu.gpudata, m ) F_gpu_temp = U_gpu else: raise ValueError('Type of modes is not supported, choose "exact" or "standard".') #Copy is required, because gels destroys input copy_func(handle, F_gpu_temp.size, int(F_gpu_temp.gpudata), 1, int(F_gpu.gpudata), 1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Compute amplitueds b using least-squares: Fb=x1 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if return_amplitudes==True: #x1_gpu = a_gpu[:,0].copy() x1_gpu = gpuarray.empty(m, data_type, order="F", allocator=alloc) copy_func(handle, x1_gpu.size, int(a_gpu[:,0].gpudata), 1, int(x1_gpu.gpudata), 1) cula_func_gels( 'N', m, k, int(1) , F_gpu_temp.gpudata, m, x1_gpu.gpudata, m) b_gpu = x1_gpu #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Compute Vandermonde matrix (CPU) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if return_vandermonde==True: V_gpu = vander(w_gpu, n=nx) # Free internal CULA memory: cula.culaFreeBuffers() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Return #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if return_amplitudes==True and return_vandermonde==True: return F_gpu, b_gpu[:k], V_gpu, omega elif return_amplitudes==True and return_vandermonde==False: return F_gpu, b_gpu[:k], omega elif return_amplitudes==False and return_vandermonde==True: return F_gpu, V_gpu, omega else: return F_gpu, omega
if __name__ == "__main__": import doctest doctest.testmod()